Where Innovation Never Stops

Explanation High Feed Milling

High feed for more metal removal rates

- The prerequisite is a dynamic machine. The principle of "high-feed milling" is based on high feed rates at low cutting depths.
- Multipass milling from the contour in several steps with low cutting dephts, allowing "high-feed milling" to fully exploit ist advantage of high feed rates.
- The small cutting edge angle minimize the radial effect of the cutting force and increase the axial effect. The **tooth feed** for a high-feed milling cutter with 9° cutting angle **can be increased by a factor of 6** in order to achieve the same chip thickness with 90° milling cutter.

This allows significantly **higher feed rates to be achieved**.

$$f_z = \frac{0,2923 \text{ mm}}{\sin 9^\circ} = 1,87 \text{ mm}$$

Forces and displacement during milling

A smaller cutting angle reduces displacement and vibrations during machining.

High feed milling strategy

Advantages in high feed milling

- Significantly increased metal removal rate (especially in comparison to 90° milling cutters)
- Reduces the chip thickness and the load on the cutting edges
- High process reliability even with long overhang from 4 up to 7 x D
- Low radial deflection and a soft cut on the component
- Reduces heat in the cutting zone
- Extremely versatile in use

Eckfräsen Nutenfräsen

Rampenfräsen Bohr-Zirkularfräsen

Formfräsen

Tauchfräsen

Recommendation high feed milling systems

Ø - Area	Productive solution	Universal Solution	Economic Solution
1 - 10 mm	SOLID FEED MILL S. 11	SOLID FEED MILL S. 11 Z 2 - 6	S. 10 NANO FEED MILL Z 2 - 3
10 - 16 mm	MULTI ^{FEED} MASTER S. 11 Z 2 - 6	MULTI FEED MASTER S. 11 Z 2 - 6	MICRO3FEED
16 - 25 mm	MICRO FEED MF 300 ENDMILL S. 9 Z4-6	LOGIQ 4 FEED HIGH FEED MILLING S. 6 Z 2 - 4	MF 300 ENDMILL S. 9 Z 2 - 6
25 - 40 mm	LOGIQAFEED HIGH FEED MILLING S. 6 Z 4 - 6	MiLi 4 FEED	Mili4FEED
40 - 63 mm	S. 5 Z5 - 8	HIĞH FEED	HIGH FEED
63 - 125 mm	S. 6 LOGIC FEED S. 6 Z 5 - 10	FEED S. 5 Z 6 - 10	NEOFEED HIGH FEED LINE Z 6 - 8
125 - 160 mm	S. 5 Z8 - 10	S. 5 Z8 - 10	S. 8 Z9 - 11

High part of face milling (Low part of milling on the wall)

Pockets, contour and helical Milling (High part of milling on the wall)

The All-Rounder

- ✓ Positive, single-sided inserts with 4 cutting edges
- ✓ Very soft cut
- ✓ Effective machining for face and profile milling
- ✓ Universally using
- ✓ Flexible use in the ISO P / M / K / S / H

Product selection / chip formers / cutting grades

Connection: shank / arbor / Flexfit

Pitch: Coarse and fine pitch

with internal coolant

Insert sizes: 09 / 12 / 17

The **Specialist** for Pocket Milling

- ✓ Double-sided insert with 4 cutting edges
- ✓ Very soft cut
- ✓ Effective machining in pocket and profile milling
- √ High shoulder clearance
- ✓ Flexible use for ISO P / M / K / S / H

Product selection / chip former / cutting materials

■ Shell mill: Ø 32 - 125 mm *FFX4 FD*_

Connections: shank / arbor / Flexfit / Multi Master

■ Insert sizes: 04 / 08

Recommended chip formers & cutting grades

RM–T: Reinforced cutting edge geometry for milling interrupted cut RM–HP: Modified radius geometry for demanding ISO M / S materials

The Economical All-Rounder

- Double-sided insert with 8 cutting edges
- Very soft cut
- Effective machining in face and profile milling
- Excellent price per insert
- Flexible use for ISO P / M / K / S / H

Product selection / chip former / cutting materials

Shell mill: Ø 50 - 100 mm FFQ8/MFQ8D

Connections: arbor

12 Insert sizes:

 $MF_22^\circ = Medium feed (a_0 3,0 mm)$ Type:

> V_f bis 6.000 mm/min

 $FF_12^\circ = Fast feed (a_D 1,5 mm)$

> V_f bis 15.000 mm/min

The Flexible Problem Solver

- ✓ Double-sided insert with 6 cutting edges
- ✓ Low power consumption
- ✓ Effective machining of all applications
- ✓ Wide product range
- ✓ Flexible use for ISO P / M / K / S / H

Product selection / chip former / cutting materials

End mill:
Ø 16 - 40 mm

FF / MF FWX_

■ Shell mill: Ø 40 - 160 mm FF/MF EWX...M/MM_

Connections: shank / arbor / Flexfit / Multi Master

Insert sizes:
04 / 05 / 07 / 08

Type: $MF_30^\circ = Medium feed (a_p 1,5 - 3,0 mm)$

> V_f bis 6.000 mm/min

 $FF_17^\circ = Fast feed (a_p 0.8 - 1.5 mm)$

> V_f bis 15.000 mm/min

The Economical Alternative for Solid Carbide

- ✓ Positive, single-sided inserts with 3 cutting edges
- ✓ Very soft cut
- ✓ Effective machining in pocket and profile milling
- √ High cost efficiency compared to solid carbide
- √ Flexible use for ISO P / M / K / S

Product selection / chip former / cutting materials

Connections: Cylindrical shank / Multi - Master

■ Insert sizes: 03

The Economical Alternative for Solid Carbide

- ✓ Positive, single-sided inserts with 3 cutting edges
- ✓ Very soft cut
- ✓ Effective machining in pocket and profile milling
- √ High cost efficiency compared to solid carbide
- ✓ Flexible use for ISO P / M / K / S / H

Product selection / chip former / cutting materials

■ End mill: Ø 8 - 10 mm FFT3 EFM 02

■ Multi - Master: Ø 8 - 10 mm *FFT3 EFM…MM_02*

Connections: Cylindrical shank / Multi - Master

■ Insert sizes: 02

The Precise and Productive High-Feed milling cutter

- High number of teeth / wide range
- Flexible for ISO P / M / K / S / H

Ø 1 - 20 mm EFF-S... Diameter range:

Teeth number: Z2 - 6

Multi Master Exchangeable Head

MM FF... Diameter range: Ø 10 - 20 mm

Number of teeth / thread: Z 2 / T06 - T12

Diameter range: Ø 8 - 25 mm MM EFF...

Number of teeth / thread: Z 4 & 6 / T05 - T15

Internal cooling: \emptyset 10 – 20 mm

Start recommendation

cutting materials

Material Numbers According to Workpiece Materials

ISO	Mat	terial	Condition	Tensile strength [N/mm²]	Hardness HB	Material No.								Mate	erial	refer	ence									
		< 0.25 %C	Annealed	420	125	1	1.0715	1.0718	1.0721	1.0722	1.0736	1.0737	1.0972	1.0976	1.0982	1.0984	1.0986	1.1121	1.1141	1.1151	1.2083	1.8900				
	Non-alloy steel		Annealed	650	190	2	1.0406	1.0416	1.0473	1.0501	1.0503	1.0511	1.0540	1.0551	1.0553	1.0577	1.0726	1.0727	1.1157	1.1158	1.1166	1.1170	1.1178	1.1180	1.1181	1.1183
	and cast steel,	>= 0.25 %C					1.1191	1.1206	1.1213	1.5423																
	free cutting steel	< 0.55 %C	Quenched and tempered	850	250	3	1.0481	1.0503	1.0614	1.0616	1.0618	1.1165	1.1167	1.1186	1.1191	1.1201	1.7242	1.7337	1.7362							
	steel	>= 0.55 %C	Annealed	750	220	4	1.0535	1.0601	1.0603	1.0605	1.1203	1.1209	1.1221	1.1231	1.1248	1.1269	1.1274	1.1663								
			Quenched and tempered	1000	300	5	1.0070	1.7238	1.7701																	
							1.0116	1.0841	1.0904	1.0961	1.2067	1.2108	1.2210	1.2241	1.2311	1.2330	1.2419	1.2510	1.2542	1.2550	1.2713	1.2721	1.2842	1.3501	1.3505	1.3505
			Annealed	600	200	6	1.5024	1.5025	1.5026	1.5027	1.5028	1.5120	1.5415	1.5419	1.5622	1.5732	1.5752	1.6587	1.6657	1.7015	1.7033	1.7035	1.7045	1.7131	1.7139	1.7176
Р							1.7220	1.7223	1.7225	1.7228	1.7262	1.7321	1.7335	1.7335	1.7380	1.7715	1.8509									
		l and cast steel		930	275	7	1.0038	1.5710	1.5755	1.6523	1.6546	1.6565	1.7218	1.7733	1.7755	1.8070										
		% of alloying nents)	vergütet	1000	300	8	1.0503	1.2332	1.3401	1.5736	1.6511	1.7361	1.8159	1.8161	1.8515	1.8523										
	eleili	ienis)		1200	350	9	1.4882	1.5864																		
			Annealed	680	200	10	1.0347	1.0401	1.0723	1.2080	1.2083	1.2085	1.2162	1.2210	1.2311	1.2312	1.2316	1.2343	1.2344	1.2363	1.2379	1.2436	1.2581	1.2601	1.2606	
		el, cast steel, and steel					1.3343	1.5662	1.5680																	
	tooi	Steel	Quenched and tempered	1100	325	11	1.3202	1.3207	1.3243	1.3246	1.3247	1.3249	1.3255	1.3343	1.3348	1.3355	1.4718	1.4935	4 4240	4 4447	4 4440	4 4540	4 4544	4 4543	4 4700	4 4724
	Stainless ferriti	ic and stainless	Ferritic and martensitic	680	200	12	1.400	1.4001	1.4002	1.4005	1.4006	1.4016	1.4027	1.4028	1.4086	1.4104	1.4112	1.4113	1.4340	1.4417	1.4418	1.4510	1.4511	1.4512	1.4720	1.4724
	martens	itic steel	Martensitic	020	240	13	1.4742	1.4747	1.4749 1.4034	1.4762 1.4057	1.4871	1,4544	1.4546	4 4000	4 4000											
			Martensitic	820	240	13	1.4021	1.4305	1.4034	1.4057	1.4313	1.4544	1.4546	1.4922	1.4923	1.4371	1.4401	1.4404	1 4400	1.4408	1 4410	1.4429	1,4435	1.4436	1 4420	1,4439
М	Stainless steel a	and stainless cast	Austenitic	600	180	14	1.4301	1.4305	1.4306	1.4308	1.4310	1.4311	_			_	1.4401	_	1.4406 1.4550		1.4410		1.4435	1.4436	1.4438	1.4439
IVI	ste	eel	Austernitic	600	100	14	1.4440	1.4449	1.4460	1.4462	1.4500	1.4504	1.4521	1.4539	1.4541	1.4542	1.4545	1.4547	1.4550	1.4552	1.4568	1.4571	1.4581	1.4583	1.4585	1.4821
			Ferritic and martensitic		180	15	0.6010	0.6015	0.6020	0.6660	0.7040	1.4891	1.4893	1.4948	1.4980											
	Grey cast	t iron (GG)	Perlitic		260	16	0.6020	0.6025	0.6030	0.6035	0.6040															
			Ferritic		160	17	0.7033	0.7043	0.7050	0.7652	0.7660															
K	Cast iron no	odular (GGG)	Perlitic		250	18	0.7060	0.7043	0.7050	0.7032	0.7000															
			Ferritic		130	19	0.8055	0.7070	0.8145																	
	Malleable	e cast iron	Perlitic		230	20	0.8035	0.8040	0.8145	0.8065	0.8155	0.8165	0.8170													
			Not curable		60	21	3.0205	3.0255	3.3315	0.6003	0.6155	0.0103	0.8170													
	Aluminium Kı	netlegierungen	Cured		100	22	3.1325	3.1655	3.2315	3.4345	3.2381	3.2382														
							3.2383	3.2581	3.3561	3.5101	3.5103	3.5812	3.5912													
	Aluminum	<=12% Si	Not curable		75	23	3.2303	3.2301	3.3301	3.3101	3.3103	3.3012	3.3312													
	wrought alloys		Cured		90	24	2.1871	3.1754	3.2163	3.2371	3.2373	3.5106														
N	,	>12% Si	Over-eutectic		130	25	212072	5.2751	5.2105	5.2572	5.2575	5.5100														
		>1% Pb	Free cutting steel		110	26	2.1090	2.1096	2.1098	2.1182																
	Copper alloys		Brass		90	27	2.0240	2.0321	2.0590	2.0592	2.0596	2.1293														
			Electrolytic copper		100	28	2.0060	2.0375	2.0966	2.0975	2.1050	2.1052	2.1292	2.4764												
			Fibreplastic/Duroplastics			29																				
	Non-te	errous	Hard rubber			30																				
			Annealed		200	31	1.4558	1.4562	1.4563	1.4864	1.4865	1.4958	1.4562	1.4563	1.4864	1.4865	1.4958	2.4668								
		Fe Basis	Cured		280	32	1.4977																			
	High temp.		Annealed		250	33	2.4360	2.4603	2.4610	2.4630	2.4630	2.4642	2.4856	2.4858												
S	Alloys	Ni or Co Basis	Cured		350	34	2.4375	2.4631	2.4668	2,4694	2.4955	2.4668	2,4670	2,4662	2,4964											
			Bast		320	35	2,4669	2,4685	2.4810	2,4973	3.7115															
			Pure	Rm = 400	Rm= 400 ⁽	36	3.7025	3.7225	2.4674																	
	Titanium a	nd II-alloys	Alpha+Beta alloys	Rm = 1050	Rm=	37	3.7124	3.7145	3.7165	3.7185	3.7195															
	III1		Cured		55 HRC	38	1.1545	1.1545	1.2762	1.4125	1.6746															
11.	Harden	ed steel	Cured		60 HRC	39																				
H	Chilled	cast iron	Cast		400	40	0.9620	0.9325	0.9630	0.9640	0.9650	0.9655	1.4841													
	Cast	t iron	Cured		55 HRC	41	0.9635	0.9645																		

Feed per Tooth for MILL4FEED FFQ4... 09 / 12 / 17

Mate	orial					FFQ4 - 09			FFQ4					FFQ4 - 17	
oy steel		Hardness HB	Material No.	V _c [m/min]	SOMT09 T & RM-T	SOMT09 HP & RM-HP	SOMW09T	SOMT12 T & RM-T	SOMT12 HP & RM-HP	SOMT12 HP-P	SOMT12 T20	SOMW12T	SOMT17 T & RM-T	SOMT17 HP & RM-HP	SOMW17T
by steel	< 0.25 %C >= 0.25 %C	125 190	1 2												
st steel, ting steel	< 0.55 %C >= 0.55 %C	250 220	3	140-180-250	fz = 1.5-0.8-0.5 ap = 0.4-0.8-1.2	-	fz = 1.5-0.8-0.5 ap = 0.4-0.8-1.2	fz = 2.0-0.9-0.5 ap = 0.5-0.9-1.5	-	-	-	fz = 2.0-0.9-0.5 ap = 0.5-0.9-1.5	fz = 2.0-1.4-0.5 ap = 0.5-2.4-3.0	-	fz = 2.0-1.4-0.5 ap = 0.5-2.2-3.0
allov stool	and cast steel	300 200 275	5 6 7	130-160-200	fz = 1.5- <mark>0.8</mark> -0.5	_	fz = 1.5-0.8-0.5	fz = 2.0- <mark>0.9</mark> -0.5		_	_	fz = 2.0- <mark>0.9</mark> -0.5	fz = 2.0-1.3-0.5		fz = 2.0-1.3-0.5
	% of alloying	300	8		ap = 0.4-0.8-1.2 fz = 1.4-0.7-0.5		ap = 0.4-0.8-1.2 fz = 1.4-0.7-0.5	ap = 0.5-0.9-1.5 fz = 1.8-0.8-0.5				ap = 0.5-0.9-1.5 fz = 1.8-0.8-0.5	ap = 0.5-2.2-3.0 fz = 1.8-1.1-0.5		ap = 0.5-2.2-3.0 fz = 1.8-1.1-0.5
		350	9	130-140-180	ap = 0.4-0.8-1.2	-	ap = 0.4-0.8-1.2	ap = 0.5-0.8-1.5	-	-	-	ap = 0.5-0.8-1.5	ap = 0.5-2.0-3.0	-	ap = 0.5-2.0-3.
loyed steel tool s	el, cast steel and steel	200 325	10 11	120-130-180	fz = 1.4-0.6-0.5 ap = 0.4-0.8-1.2	-	fz = 1.4-0.6-0.5 ap = 0.4-0.8-1.2	fz = 1.8-0.7-0.5 ap = 0.5-0.9-1.5	-	-	-	fz = 1.8-0.7-0.5 ap = 0.5-0.9-1.5	fz = 1.8-1.1-0.5 ap = 0.5-2.0-3.0	-	fz = 1.8-1.1-0.5 ap = 0.5-2.0-3.
ess ferritic martensi	and stainless itic steel	200	12	90-110-160	fz = 1.4-0.7-0.5 ap = 0.4-0.7-1.2	-	fz = 1.4-0.7-0.5 ap = 0.4-0.7-1.2	fz = 1.8-0.8-0.5 ap = 0.5-0.9-1.5	-	-	-	fz = 1.8-0.8-0.5 ap = 0.5-0.9-1.5	fz = 1.8-1.0-0.5 ap = 0.5-2.0-3.0	-	fz = 1.8-1.0-0.5 ap = 0.5-2.0-3.
ss steel an	nd stainless cast	180	14	80-140-180	-	fz = 1.4-0.7-0.4 ap = 0.4-0.6-1.2	-	-	fz = 1.8-0.8-0.4 ap = 0.4-0.8-1.5	-	-	-	-	fz = 2.0-1.0-0.5 ap = 0.4-2.0-3.0	-
Grey cast	iron (GG)	180	15	140-180-280	fz = 1.5-1.0-0.5	ар - 0.4-0.0-1.2	fz = 1.5-1.0-0.5	fz = 2.0-1.2-0.5	ap = 0.4-0.8-1.5		fz = 2.0-1.2-0.5	fz = 2.0-1.2-0.5	fz = 2.0-1.4-0.5	ар = 0.4-2.0-3.0	fz = 2.0-1.4-0.5
Oley Cast	illul (GG)	260 160	16 17	140-180-280	ap = 0.4-1.0-1.2		ap = 0.4-1.0-1.2	ap = 0.5-1.2-1.5		-	ap = 0.4-1.2-1.5	ap = 0.5-1.2-1.5	ap = 0.5-2.4-3.0		ap = 0.5-2.4-3.0
Malleable	dular (GGG)	250 130 230	18 19 20	120-160-250	fz = 1.5-1.0-0.5 ap = 0.4-1.0-1.2	-	fz = 1.5-1.0-0.5 ap = 0.4-1.0-1.2	fz = 2.0-1.2-0.5 ap = 0.5-1.2-1.5	-	-	fz = 2.0-1.2-0.5 ap = 0.4-1.2-1.5	fz = 2.0-1.2-0.5 ap = 0.5-1.2-1.5	fz = 2.0-1.4-0.5 ap = 0.5-2.4-3.0	-	fz = 2.0-1.4-0.5 ap = 0.5-2.4-3.6
ıminum wr	rought alloys	60 100	21 22		-	-	-	-	-			-	-	-	
	<=12%	75	23	400-530-640	-	-	-	-	-	fz = 1.8-1.2-0.5 ap = 0.5-1.2-1.5	-	-	-	-	-
um cast oys	Si	90	24		-	-	-	-	-		-	-	-	-	-
	>12% Si	130	25	240-280-500	-	-	-	-	-	fz = 1.8-1.0-0.5 ap = 0.5-1.0-1.5	-	-	-	-	-
r alloys	>1% Pb	110 90	26 27	240-280-550	-	-	-	-	-	fz = 1.8-1.2-0.5 ap = 0.5-1.2-1.5	-	-	-	-	-
!		100	28 29	160-220-400	-	-	-	-	-		-	-	-	-	-
Non-fe	errous		30	-	-	-	-	-	-		-	-	-	-	-
	Fe Basis	200 280	31 32	20-60-100	-	fz = 1.0-0.6-0.4 ap = 0.4-0.7-1.2	-	-	fz = 1.0-0.7-0.4 ap = 0.4-0.9-1.5	-	-	-	-	fz = 1.4-0.8-0.5 ap = 0.4-1.5-3.0	-
temp. oys	Ni or Co Basis	250 350 320	33 34	20-35-80	-	fz = 1.0-0.4-0.3 ap = 0.4-0.5-1.2	-	-	fz = 1.0-0.4-0.3 ap = 0.4-0.6-1.5	-	-	-	-	fz = 1.4-0.6-0.5 ap = 0.4-1.5-3.0	-
îtanium an	nd Ti alloys	320 Rm= 400 Rm= 1050	35 36 37	30-50-80	-	fz = 1.0-0.7-0.4 ap = 0.4-0.6-1.2	-	-	fz = 1.0-0.7-0.4 ap = 0.4-0.9-1.5	-	-	-	-	fz = 1.4-0.8-0.5 ap = 0.4-1.5-3.0	-
		45 -55 HRC	38	40-60-120	fz = 1.2-0.5-0.3 ap = 0.4-0.6-1.2		fz = 1.2-0.5-0.3 ap = 0.4-0.6-1.2	fz = 1.2-0.7-0.3 ap = 0.5-0.8-1.5	αρ - 0.4-0.5-1.5	-	-	fz = 1.4-0.7-0.3 ap = 0.5-0.8-1.5	fz = 1.6-1.0-0.3 ap = 0.5-1.5-2.5		fz = 1.6-1.0-0.3 ap = 0.5-1.5-2.3
Hardened steel Childed cast iron Cast iron	ed steel	55-58 HRC		30-50-80	ар - 0.4-0.0-1.2	-	fz = 0.8 - 0.4 - 0.2 fz = 0.8 - 0.4 - 0.2 ap = 0.2 - 0.4 - 0.8	0.3-0.8-1.5	-	-	-	fz = 0.8-0.4-0.2 ap = 0.2-0.4-0.8	υ.э- <u>1.э-</u> 2.5	-	ap = 0.3-1.3-2.
		58-62 HRC	39	30-40-70	-	-	fz = 0.5-0.3-0.2 ap = 0.1-0.2-0.4	-	-	-	-	fz = 0.5-0.3-0.2 ap = 0.1-0.2-0.4	-	-	-
	cast iron	400	40	60-80-140	fz = 1.2-0.7-0.5 ap = 0.4-0.7-1.2	-	fz = 1.2-0.7-0.5 ap = 0.4-0.7-1.2	fz = 1.6-0.8-0.5 ap = 0.5-1.0-1.5	-	-	-	fz = 1.6-0.8-0.5 ap = 0.5-1.0-1.5	fz = 1.6-1.0-0.5 ap = 0.5-2.0-1.5	-	fz = 1.6-1.0-0.5 ap = 0.5-2.0-1.5
	55 HRC	41	30-60-120	fz = 1.2-0.5-0.3 ap = 0.4-0.6-1.2	-	fz = 1.2 - 0.5 - 0.3 ap = 0.4 - 0.6 - 1.2	fz = 1.2 - 0.7 - 0.3 ap = 0.5 - 0.8 - 1.5	-	-	-	fz = 1.2 - 0.7 - 0.3 ap = 0.5 - 0.8 - 1.5	fz = 1.6-0.8-0.3 ap = 0.5-1.2-2.5	-	fz = 1.6-0.8-0.3 ap = 0.5-1.2-2.5	
Chilled c	_	ron	sast iron 400 ron 55 HRC	sst iron 400 40 ron 55 HRC 41	ust iron 400 40 60-80-140	test iron 400 40 $60-80-140$ $fz = 1.2-0.7-0.5$ $ap = 0.4-0.7-1.2$ $fz = 1.2-0.5-0.3$ $ap = 0.4-0.6-1.2$	set iron 400 40 60-80-140 fz = 1.2-0.7-0.5 ap = 0.4-0.7-1.2 fz = 1.2-0.5-0.3 ap = 0.4-0.6-1.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S8-62 HRC 30-40-70 - ap = 0.1-0.2-0.4 - ap = 0.1-0.2-0.4 - ap = 0.1-0.2-0.4 - ap = 0.1-0.2-0.5 - ap = 0.4-0.7-1.2 - ap = 0.4-0.7-1.2 ap = 0.5-0.15 - ap = 0.4-0.7-1.2 ap = 0.5-0.15 - ap = 0.4-0.6-1.2 ap = 0.4-0.6-1.2 ap = 0.5-0.8-1.5 - ap = 0.4-0.6-1.2 ap = 0.5-0.8-1.5 - ap = 0.4-0.6-1.2 ap = 0.5-0.8-1.5	S8-62 HRC 30-40-70 ap = 0.1-0.2-0.4 fz = 1.2-0.7-0.5 fz = 1.2-0.7-0.3 fz =	ss-62 HRC 30-40-70 ap = 0.1-0.2-0.4 ap = 0.1-0.2-0.4 set iron 400 40 60-80-140 ap = 0.4-0.7-1.2 ap = 0.4-0.7-1.2 ap = 0.4-0.7-1.5 ap = 0.4-0.7-1.2 ap = 0.5-10.15 ap = 0.5-10.15 ap = 0.5-10.15 ap = 0.5-0.8-1.5 ap = 0.4-0.6-1.2 ap = 0.5-0.8-1.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S8-62 HRC 30-40-70 ap = 0.1-0.2-0.4 fz = 1.2-0.7-0.5 fz = 1.2-0.7-0.5 ap = 0.4-0.7-1.2 ap = 0.4-0.7-1.2 ap = 0.5-1.0-1.5 ap = 0.5-0.8-1.5 ap =

Feed per Tooth for LOGIQ4FEED FFX4... 04 – 08

100			0 1141	Tensile Strength	Handa a a 100	Material	v _c		FFX4 - 04		FFX	1 - 08
ISO	Mate	eriai	Condition	[N/mm²]	Hardness HB	No.	[m/min]	XNMU04 T & RM-T	XNMU04 HP & RM-HP	XNM W 04 T	XNMU08 T	XNMU08 HP
		< 0.25 %C	Annealed	420	125	1						
	Non-alloy steel	>= 0.25 %C	Annealed	650	190	2		fz = 1.2-1.0-0.4		fz = 1.2-1.0-0.4	fz = 1.2-1.0-0.2	
	and cast steel,	< 0.55 %C	Quenched and tempered	850	250	3	140- <mark>180</mark> -250	ap = 0.2-0.7-0.8	-	ap = 0.2-0.7-0.8	ap = 0.2-1.6-2.0	-
	free cutting steel	>= 0.55 %C	Annealed	750	220	4		up - 0.2 0.7 0.0		up - 0.2 0.7 0.0	up - 0.2 1.0 2.0	
			Quenched and tempered	1000	300	5						
	Low alloy steel	and aget steel	Annealed	600 930	200 275	6 7	130-160-200	fz = 1.2- <mark>0.9</mark> -0.4		fz = 1.2- <mark>0.9</mark> -0.4	fz = 1.2- <mark>0.9</mark> -0.2	
	(less than 5 %			1000	300	8	130-100-200	ap = 0.2-0.7-0.8	_	ap = 0.2-0.7-0.8	ap = 0.2-1.6-2.0	-
Р	elem		Quenched and tempered	1200	350	9	130-140-180	fz = 1.2-0.8-0.4 ap = 0.2-0.6-0.8	-	fz = 1.2-0.8-0.4 ap = 0.2-0.6-0.8	fz = 1.2-0.8-0.2 ap = 0.2-1.4-2.0	-
	High alloyed stee		Annealed	680	200	10	120-130-180	fz = 1.2- <mark>0.7</mark> -0.4		fz = 1.2- <mark>0.7</mark> -0.4	fz = 1.2- <mark>0.7</mark> -0.2	
	tools	steel	Quenched and tempered	1100	325	11	120 150 100	ap = 0.2-0.6-0.8		ap = 0.2-0.6-0.8	ap = 0.2-1.4-2.0	
	Stainless ferrition		Ferritic, martensitisch	680	200	12	100-150-180	fz = 1.2- <mark>0.8</mark> -0.4		fz = 1.2- <mark>0.8</mark> -0.4	fz = 1.2- <mark>0.8</mark> -0.2	
	martono		Martensitic	820	240	13	130 130 180	ap = 0.2-0.6-0.8		ap = 0.2-0.6-0.8	ap = 0.2-1.4-2.0	
М	Stainless steel ar		Austenitic	600	180	14	80-140-180	-	fz = 0.9-0.6-0.4 ap = 0.2-0.6-0.8	-	-	fz = 0.8-0.6-0.2 ap = 0.5-1.4-2.0
	Grey cast	iron (GG)	Ferritic/ martensitic		180	15	140-180-280	fz = 1.2-1.0-0.4 ap = 0.2-0.7-0.8	-	fz = 1.2-1.0-0.4 ap = 0.2-0.7-0.8	fz = 1.2-1.0-0.2 ap = 0.2-1.6-2.0	-
1.7			Pearlitic		260	16		ap = 0.2-0.7-0.8		ap = 0.2-0.7-0.8	ap = 0.2-1.0-2.0	
K	Cast iron no	dular (GGG)	Ferritic		160	17						
	Odot Horrito	uu.u. (000)	Pearlitic		250	18	120-160-250	fz = 1.2-1.0-0.4	_	fz = 1.2-1.0-0.4	fz = 1.2-1.0-0.2	_
	Malleable	cast iron	Ferritic		130	19		ap = 0.2-0.7-0.8		ap = 0.2-0.7-0.8	ap = 0.2-1.6-2.0	
			Pearlitic		230	20						
		Fe Basis	Annealed		200	31	20-60-100	-	fz = 0.9- <mark>0.6</mark> -0.4	-	-	fz = 0.8- <mark>0.6</mark> -0.2
	High temp.		Cured		280	32			ap = 0.2-0.6-0.8			ap = 0.5-1.2-2.0
	alloys		Annealed		250	33			fz = 0.9- <mark>0.4</mark> -0.4			fz = 0.8- <mark>0.4</mark> -0.2
S		Ni or Co Basis	Cured		350	34	20-35-80	-	ap = 0.2 - 0.7 - 0.8	-	-	ap = 0.5 - 1.0 - 2.0
			Cast		320	35			•			•
			Pure titanium	Rm = 400	Rm= 400	36	20 50 00		fz = 0.9- <mark>0.6</mark> -0.4			fz = 0.8- <mark>0.6</mark> -0.2
	Titanium ar	nd Ti alloys	Alpha+beta alloy	Rm = 1050	Rm= 1050	37	30 -50 -80	-	ap = 0.2-0.6-0.8	-	-	ap = 0.5-1.2-2.0
			Hardened	HARDOX	45 -55 HRC	38	40- <mark>60</mark> -120	fz = 0.8-0.4-0.2 ap = 0.2-0.5-0.8		fz = 0.8-0.4-0.2 ap = 0.2-0.5-0.8	fz = 1.0-0.6-0.2 ap = 0.2-0.8-2.0	
	Hardene	ed steel	Hardened		55-58 HRC	39	30-50-80	fz = 0.8- <mark>0.4-</mark> 0.2 ap = 0.2- 0.5 -0.8	-	fz = 0.8-0.4-0.2 ap = 0.2-0.5-0.8	-	-
Н			- I lando i lod		58-62 HRC		30 -40 -70	-	-	-	-	-
	Chilled o	east iron	Cast		400	40	60-80-140	fz = 1.2-0.6-0.5 ap = 0.4-0.6-1.2	-	fz = 1.2-0.6-0.5 ap = 0.4-0.6-1.2	fz = 1.0-0.8-0.2 ap = 0.2-1.0-2.0	-
	Cast	iron	Hardened		55 HRC	41	30- <mark>60</mark> -120	fz = 0.7-0.4-0.2 ap = 0.2-0.5-0.8	-	fz = 0.7-0.4-0.2 ap = 0.2-0.5-0.8	fz = 1.0-0.6-0.2 ap = 0.2-0.7-2.0	-
Radiu	s for prog	ramming:						1,8	mm	1,72 mm	4,0	mm

Feed per Tooth for NEOFEED FFQ8... 12

ISO	Mat	erial	Condition	Tensile Strength	Hardness HB	Material	V _c	FF	Q8	MF	Q8
100	lilat.	ciiai	Containon	[N/mm ²]	Tiardile 33 Tib	No.	[m/min]	SZMU12 T	SZMU12 HP	SZMU12 T	SZMU12 HP
		< 0.25 %C	Annealed	420	125	1					
	Non-alloy steel	>= 0.25 %C	Annealed	650	190	2		fz = 1.5-1.2-0.4		fz = 1.2-1.0-0.2	
	and cast steel,	< 0.55 %C	Quenched and tempered	850	250	3	140- <mark>180</mark> -250		-	7 7	-
	free cutting steel	>= 0.55 %C	Annealed	750	220	4		ap = 0.5-1.0-1.5		ap = 0.5-1.6-3.0	
			Quenched and tempered	1000	300	5					
			Annealed	600	200	6		fz = 1.5-1.0-0.4		fz = 1.2- <mark>0.9</mark> -0.2	
	Low alloy steel	l and cast steel		930	275	7	130- <mark>160</mark> -200	ap = 0.5-1.0-0.4	-	ap = $0.5 - 1.6 - 3.0$	-
	(less than 5			1000	300	8		ap = 0.5-1.0-1.5		ap = 0.5-1.6-3.0	
P	elem	ients)	Quenched and tempered	1200	350	9	130-140-180	fz = 1.5- <mark>0.8-</mark> 0.4 ap = 0.5- 1.0 -1.5	-	fz = 1.2-0.8-0.2 ap = 0.5-1.4-3.0	
	High alloyed stee		Annealed	680	200	10	120-130-180	fz = 1.8-0.7-0.5		fz = 1.2- <mark>0.7</mark> -0.2	
	tool	steel	Quenched and tempered	1100	325	11	120-130-180	ap = 0.4-1.0-1.5	-	ap = 0.5-1.4-3.0	
	Stainless ferrition	c and stainless	Ferritic, martensitisch	680	200	12	100-150-180	fz = 1.8- <mark>0.8</mark> -0.5		fz = 1.2- <mark>0.8</mark> -0.2	
	martens	illo Stoci	Martensitic	820	240	13	100-150-180	ap = 0.4-1.0-1.5	_	ap = 0.5-1.4-3.0	_
M	Stainless steel a	nd stainless cast eel	Austenitic	600	180	14	80-140-180	-	fz = 0.9-0.6-0.4 ap = 0.2-0.6-0.8		fz = 0.8-0.6-0.2 ap = 0.5-1.4-3.0
	Grey cast	t iron (GG)	Ferritic/ martensitic		180	15	140-180-280	fz = 2.0-1.2-0.5 ap = 0.4-1.2-1.5	-	fz = 1.2-1.0-0.2 ap = 0.5-1.6-3.0	-
			Pearlitic		260	16		ap = 0.4-1.2-1.3		ap = 0.3-1.0-3.0	
K	Coat iron no	odular (GGG)	Ferritic		160	17					
	Cast IIOII IIC	dulai (GGG)	Pearlitic		250	18	120-160-250	fz = 2.0-1.2-0.5		fz = 1.2-1.0-0.2	
	Malloable	e cast iron	Ferritic		130	19	120-100-230	ap = 0.4-1.2-1.5	_	ap = 0.5 - 1.6 - 3.0	-
	Walicable	cast non	Pearlitic		230	20					
		Fe Basis	Annealed		200	31	20-60-100		fz = 0.9- <mark>0.6</mark> -0.4		fz = 0.8-0.6-0.2
		re basis	Cured		280	32	20-60-100	-	ap = 0.2 - 0.6 - 0.8	-	ap = 0.5 - 1.4 - 3.0
	High temp.		Annealed		250	33					
	alloys	Ni or Co Basis	Cured		350	34	20-35-80	-	fz = 0.9- <mark>0.4</mark> -0.4	-	fz = 0.8- <mark>0.4</mark> -0.2
S			Cast		320	35			ap = 0.2-0.7-0.8		ap = 0.5-1.4-3.0
			Pure titanium	Rm = 400	Rm= 400	36					
	Titanium a	nd Ti alloys	Alpha+beta alloy	Rm = 1050	Rm= 1050	37	30 -50 -80	-	fz = 0.9-0.6-0.4 ap = 0.2-0.6-0.8	-	fz = 0.8-0.6-0.2 ap = 0.5-1.4-3.0
			Hardened	HARDOX	45 -55 HRC	38	40-60-120	fz = 1.2-0.7-0.3 ap = 0.4-0.8-1.5	-	fz = 1.0-0.5-0.2 ap = 0.5-1.0-3.0	-
	Hardened steel	Hardened		55-58 HRC	39	30-50-80	fz = 0.8-0.5-0.3 ap = 0.1-0.4-1.0	-	fz = 0.8-0.4-0.2 ap = 0.2-0.6-1.4	-	
Н			narderied		58-62 HRC	29	30-40-70	-	-	-	
	Chilled	cast iron	Cast		400	40	60- <mark>80</mark> -140	fz = 1.6-0.8-0.5 ap = 0.4-1.0-1.5	-	fz = 1.0-0.8-0.2 ap = 0.2-1.2-2.0	-
	Cas	t iron	Hardened		55 HRC	41	30-60-120	fz = 1.2-0.7-0.3 ap = 0.4-0.8-1.5	-	fz = 1.0-0.6-0.2 ap = 0.2-1.0-2.0	-
Padi	is for prod	rommina						3.6 ı	mm	5.0	na ma

Radius for programming:

3,6 mm

5,0 mm

Feed per Tooth for HELI6FEED FF H600... 04 / 05 / 07 / 08

								H60	0 - 04	H60	0 - 05	H60	0 - 07		H600 - 08	
ISO	Mat	erial	Condition	Tensile Strength [N/mm²]	Hardness HB	Material No.	V _c [m/min]	WXCU 04	WXCU 04 HP	WXCU 05	WXCU 05 HP	WXCU 07 T	WXCU 07 HP	WXCU 08 T	WXCU 08 HP	WXCU 08 RM
		< 0.25 %C	Annealed	420	125	1			i i r		TIF		1117		H	IXW
	Non-alloy steel	>= 0.25 %C	Annealed	650	190	2										
	and cast steel,	< 0.55 %C	Quenched and tempered	850	250	3	140-180-250	fz = 1.1- <mark>0.7</mark> -0.35	_	fz = 1.1- <mark>0.7</mark> -0.35	-	fz = 1.4- <mark>0.8</mark> -0.5	-	fz = 1.4-1.0-0.5	_	fz = 1.4-1.0-0.5
	free cutting steel	>= 0.55 %C	Annealed	750	220	4		ap = 0.5-0.7-0.8		ap = 0.5-0.8-1.0		ap = 0.5-0.8-1.5		ap = 0.5-1.2-2.0		ap = 0.5-1.2-2.0
			Quenched and tempered	1000	300	5										
			Annealed	600	200	6		fz = 1.1-0.7-0.35		fz = 1.1-0.7-0.35		fz = 1.4-0.8-0.5		fz = 1.4-1.0-0.5		fz = 1.4-1.0-0.5
		I and cast steel		930	275	7	130- <mark>160</mark> -200		-		-		-		-	
	(less than 5			1000	300	8		ap = 0.5-0.7-0.8		ap = 0.5-0.8-1.0		ap = 0.5-0.8-1.5		ap = 0.5-1.2-2.0		ap = 0.5-1.2-2.0
Р	elem	nents)	Quenched and tempered	1200	350	9	130-140-180	fz = 1.1-0.6-0.35 ap = 0.5-0.7-0.8		fz = 1.1-0.6-0.35 ap = 0.5-0.8-1.0		fz = 1.4-0.7-0.5 ap = 0.5-0.8-1.5		fz = 1.4-0.9-0.5 ap = 0.5-1.0-2.0		fz = 1.4-0.9-0.5 ap = 0.5-1.0-2.0
	High alloyed stee	el, cast steel and	Annealed	680	200	10		fz = 1.1-0.5-0.35		fz = 1.1-0.5-0.35		fz = 1.4-0.6-0.5		fz = 1.4-0.8-0.5		fz = 1.4-0.8-0.5
		steel	Quenched and tempered	1100	325	11	120- <mark>130</mark> -180	ap = 0.5-0.7-0.8	-	ap = 0.5-0.8-1.0	-	ap = 0.5-0.8-1.5	-	ap = 0.5-1.0-2.0	•	ap = 0.5-1.0-2.0
	Stainless ferrition		Ferritic, martensitisch	680	200	12		fz = 1.1-0.7-0.35		fz = 1.1-0.7-0.35		fz = 1.4-0.8-0.5		fz = 1.4-1.0-0.5		fz = 1.4-1.0-0.5
	martens	sitic steel	Martensitic	820	240	13	90-110-160	ap = 0.5-0.7-0.8	-	ap = 0.5-0.8-1.0	-	ap = 0.5-0.8-1.5		ap = 0.5-1.2-2.0	-	ap = 0.5-1.2-2.0
М		nd stainless cast eel	Austenitic	600	180	14	80-140-180	-	fz = 0.7-0.6-0.35 ap = 0.5-0.6-0.8	-	fz = 0.7-0.6-0.35 ap = 0.5-0.7-1.0	-	fz = 0.9-0.6-0.35 ap = 0.5-0.8-1.5	-	fz = 0.9-0.6-0.35 ap = 0.5-1.2-2.0	-
	Grey cast	Grey cast iron (GG)	Ferritic/ martensitic		180	15	140-180-280	fz = 1.1-0.7-0.35 ap = 0.5-0.7-0.8		fz = 1.1-0.7-0.35 ap = 0.5-0.8-1.0		fz = 1.4-0.8-0.5 ap = 0.5-0.8-1.5	-	fz = 1.4-1.0-0.5 ap = 0.5-1.2-2.0	-	fz = 1.4-1.0-0.5 ap = 0.5-1.2-2.0
K			Pearlitic Ferritic		260	16 17		up - 0.5 0.7 0.0		up - 0.5 0.0 1.0		up - 0.5 0.0 1.5		up - 0.3 1.2 2.0		up - 0.5 1.2 2.0
IX.	Cast iron no	odular (GGG)	Perritic Pearlitic		160 250	17		fz = 1.1-0.7-0.35		fz = 1.1- <mark>0.7</mark> -0.35		fz = 1.4-0.8-0.5		fz = 1.4-1.0-0.5		fz = 1.4-1.0-0.5
			Ferritic		130	19	120- <mark>160</mark> -250	ap = 0.5-0.7-0.8	-	ap = $0.5 - 0.8 - 1.0$	-	ap = 0.5-0.8-1.5	-		-	ap = 0.5-1.2-2.0
	Malleable	e cast iron	Pearlitic		230	20		ap = 0.5-0.7-0.8		ap = 0.5-0.8-1.0		ap = 0.5-0.8-1.5		ap = 0.5-1.2-2.0		ap = 0.5-1.2-2.0
_			Annealed		200	31			fz = 0.7-0.4-0.35		fz = 0.7-0.4-0.35		fz = 0.9-0.4-0.35		fz = 0.9-0.5-0.35	
		Fe Basis	Cured		280	32	20- <mark>60</mark> -100	-	ap = 0.2-0.3-0.8	-	ap = 0.2-0.4-1.0	-	ap = 0.2-0.5-1.5	-	ap = 0.2-0.6-1.5	-
	High temp.		Annealed		250	33										
	alloys	Ni or Co Basis	Cured		350	34	20-35-80		fz = 0.7- <mark>0.35</mark> -0.35		fz = 0.7- <mark>0.35</mark> -0.35		fz = 0.9- <mark>0.4</mark> -0.35		fz = 0.9- <mark>0.4</mark> -0.35	
S		Ni Oi CO Dasis	Cured		350	35	20-53-60	-	ap = 0.2-0.3-0.8	•	ap = 0.2-0.3-1.0	•	ap = 0.2-0.5-1.5	-	ap = 0.2-0.6-2.0	-
			Pure titanium	Rm = 400	320 Rm= 400	36										
	Titanium a	nd Ti alloys	Alpha+beta alloy	Rm = 1050	Rm= 1050	37	30 -50 -80	-	fz = 0.7-0.4-0.35 ap = 0.2-0.4-0.8	-	fz = 0.7-0.4-0.35 ap = 0.2-0.4-1.0	-	fz = 0.9-0.5-0.35 ap = 0.2-0.5-1.5	-	fz = 0.9 - 0.6 - 0.35 ap = 0.2 - 0.6 - 2.0	-
			Hardened	HARDOX	45 -55 HRC	38	40-60-120	fz = 1.1-0.6-0.35 ap = 0.5-0.6-0.8	-	fz = 1.1-0.7-0.35 ap = 0.5-0.6-1.0	-	fz = 1.4-0.8-0.5 ap = 0.5-0.6-1.5	-	fz = 1.4-0.8-0.5 ap = 0.5-1.0-2.0	-	fz = 1.4-0.8-0.5 ap = 0.5-1.0-2.0
	Harden	ed steel	Herdened		55-58 HRC	39	30-50-80	-	-	-	-		-	-	-	-
Н			Hardened		58-62 HRC	39	30-40-70	-	-	-	-	-	-	-	-	-
	Chilled	cast iron	Cast		400	40	60-80-140	fz = 1.1- <mark>0.6</mark> -0.35 ap = 0.5- 0.7 -0.8	-	fz = 1.1- <mark>0.7</mark> -0.35 ap = 0.5- <mark>0.7</mark> -1.0	-	fz = 1.4-0.8-0.5 ap = 0.5-0.7-1.5	-	fz = 1.4- <mark>0.7</mark> -0.5 ap = 0.5- <mark>0.9</mark> -2.0	-	fz = 1.4-0.7-0.5 ap = 0.5-0.9-2.0
	Casi	t iron	Hardened		55 HRC	41	30- <mark>60</mark> -120	fz = 1.1-0.6-0.35 ap = 0.5-0.7-0.8	-	fz = 1.1-0.7-0.35 ap = 0.5-0.7-1.0	-	fz = 1.4-0.8-0.5 ap = 0.5-0.7-1.5	-	fz = 1.4-0.8-0.5 ap = 0.5-1.0-2.0	-	fz = 1.4-0.8-0.5 ap = 0.5-1.0-2.0
Radi	ius for n	rogramn	nina:					1.9	mm	2.3	mm	3.1	mm	33	mm	3.7 mn

Feed per Tooth for HELI6FEED MF H600... 04 / 05 / 07 / 08

	1															
				Tensile Strength		Material	V _c	H60	0 - 04	H60	0 - 05	H60	0 - 07		H600 - 08	
ISO	Mat	terial	Condition	[N/mm²]	Hardness HB	No.	[m/min]	WXCU 04 T	WXCU 04 HP	WXCU 05 T	WXCU 05 HP	WXCU 07 T	WXCU 07 HP	WXCU 08 T	WXCU 08 HP	WXCU 08 RM
		< 0.25 %C	Annealed	420	125	1										
	Non-alloy steel	>= 0.25 %C	Annealed	650	190	2		fz = 0.6-0.4-0.2		fz = 0.6-0.4-0.2		fz = 0.8-0.6-0.4		fz = 0.8-0.6-0.4		fz = 0.8-0.6-0.4
	and cast steel,	< 0.55 %C	Quenched and tempered	850	250	3	140-180-250	ap = 0.5-1.2-1.5	-	ap = 0.5-1.4-2.0	-	ap = 0.5-2.0-2.7	-	ap = 0.5-2.5-3.5	-	ap = 0.5-2.5-3.5
	free cutting steel	>= 0.55 %C	Annealed	750	220	4		ap = 0.5-1.2-1.5		ap = 0.5-1.4-2.0		ap = 0.5-2.0-2.7		ap = 0.3-2.3-3.3		ap = 0.5-2.5-3.5
			Quenched and tempered	1000	300	5										
	Laurallaurata al	l and cast steel	Annealed	600 930	200 275	6 7	130-160-200	fz = 0.6- <mark>0.4</mark> -0.2		fz = 0.6- <mark>0.4</mark> -0.2		fz = 0.8- <mark>0.6</mark> -0.4		fz = 0.8-0.6-0.4		fz = 0.8-0.6-0.4
		alloying elements)		1000	300	8	130-160-200	ap = 0.5-1.2-1.5		ap = 0.5-1.4-2.0	-	ap = 0.5-2.0-2.7	-	ap = 0.5-2.5-3.5	-	ap = 0.5-2.5-3.5
Р	(ICSS BIBIT O 70 OF	aloying demons)	Quenched and tempered	1200	350	9	130-140-180	fz = 0.6-0.3-0.2 ap = 0.5-1.2-1.5		fz = 0.6-0.3-0.2 ap = 0.5-1.4-2.0	-	fz = 0.8-0.5-0.4 ap = 0.5-2.0-2.7		fz = 0.8-0.5-0.4 ap = 0.5-2.5-3.5	-	fz = 0.8-0.5-0.4 ap = 0.5-2.5-3.5
	High alloyed stee	el, cast steel and	Annealed	680	200	10	120-130-180	fz = 0.6- <mark>0.2</mark> -0.2		fz = 0.6-0.2-0.2		fz = 0.8-0.4-0.4		fz = 0.8- <mark>0.4</mark> -0.4		fz = 0.8-0.4-0.4
	tool	steel	Quenched and tempered	1100	325	11	120-150-180	ap = 0.5-1.2-1.5	•	ap = 0.5-1.4-2.0	•	ap = 0.5-2.0-2.7	•	ap = 0.5-2.5-3.5		ap = 0.5-2.5-3.5
	Stainless ferriti	ic and stainless sitic steel	Ferritic, martensitisch	680	200	12	90-110-160	fz = 0.6- <mark>0.3</mark> -0.2		fz = 0.6-0.3-0.2		fz = 0.8-0.5-0.4		fz = 0.8- <mark>0.5</mark> -0.4		fz = 0.8- <mark>0.5</mark> -0.4
	martens		Martensitic	820	240	13	30 110-100	ap = 0.5-1.2-1.5		ap = 0.5-1.4-2.0		ap = 0.5-2.0-2.7		ap = 0.5-2.5-3.5		ap = 0.5-2.5-3.5
M	Stainless steel ar	nd stainless cast leel	Austenitic	600	180	14	80-140-180	-	fz = 0.4-0.3-0.2 ap = 0.5-1.2-1.5	-	fz = 0.4-0.3-0.2 ap = 0.5-1.4-2.0	-	fz = 0.5-0.4-0.2 ap = 0.5-2.0-2.7	-	fz = 0.5-0.4-0.2 ap = 0.5-2.5-3.5	-
	Grey cast	t iron (GG)	Ferritic/ martensitic		180	15	140-180-280	fz = 0.6-0.4-0.2 ap = 0.5-1.2-1.5		fz = 0.6-0.4-0.2		fz = 0.8-0.6-0.4		fz = 0.8-0.6-0.4		fz = 0.8-0.6-0.4
			Pearlitic		260	16		ap = 0.5-1.2-1.5		ap = 0.5-1.4-2.0		ap = 0.5-2.0-2.7		ap = 0.5-2.5-3.5		ap = 0.5-2.5-3.5
K	O+:	-t-t (CCC)	Ferritic		160	17										
	Cast Iron no	odular (GGG)	Pearlitic		250	18	120- 160 -250	fz = 0.6- <mark>0.4</mark> -0.2		fz = 0.6- <mark>0.4</mark> -0.2		fz = 0.8- <mark>0.6</mark> -0.4		fz = 0.8-0.6-0.4		fz = 0.8-0.6-0.4
	Malleahle	e cast iron	Ferritic		130	19	120-100-230	ap = 0.5-1.2-1.5	•	ap = 0.5-1.4-2.0	•	ap = 0.5-2.0-2.7	•	ap = 0.5-2.5-3.5	-	ap = 0.5-2.5-3.5
	manound	5 646K II 611	Pearlitic		230	20										
		Fe Basis	Annealed		200	31	20-60-100	_	fz = 0.4- <mark>0.3</mark> -0.2		fz = 0.4- <mark>0.3</mark> -0.2	-	fz = 0.5- <mark>0.3</mark> -0.2	-	fz = 0.5- <mark>0.3</mark> -0.2	
			Cured		280	32			ap = 0.5- <mark>0.6</mark> -1.5		ap = 0.5-0.7-2.0		ap = 0.5-0.8-2.7		ap = 0.5-0.9-3.5	
	High temp. alloys		Annealed		250	33			fz = 0.4-0.2-0.2		fz = 0.4- <mark>0.2</mark> -0.2		fz = 0.5- <mark>0.2</mark> -0.2		fz = 0.5- <mark>0.2</mark> -0.2	
S		Ni or Co Basis	Cured		350	34	20-35-80	-	ap = 0.5-0.4-1.5	-	ap = 0.5-0.5-2.0	-	ap = 0.5-0.6-2.7	-	ap = 0.5-0.7-3.5	•
			Cast		320	35			•						•	
	Titanium a	and Ti alloys	Pure titanium Alpha+beta alloy	Rm = 400 Rm = 1050	Rm= 400 Rm= 1050	36 37	30-50-80	-	fz = 0.4-0.3-0.2 ap = 0.5-0.6-1.5	-	fz = 0.4-0.3-0.2 ap = 0.5-0.7-2.0	-	fz = 0.5-0.3-0.2 ap = 0.5-0.8-2.7	-	fz = 0.5-0.3-0.2 ap = 0.5-0.9-3.5	-
	Harden	ned steel	Hardened		55 HRC	38	40-60-120	fz = 0.6-0.4-0.2 ap = 0.5-1.0-1.5		fz = 0.6-0.4-0.2 ap = 0.5-1.2-2.0		fz = 0.8-0.5-0.4 ap = 0.5-1.6-2.7		fz = 0.8-0.5-0.4 ap = 0.5-2.0-3.5	-	fz = 0.8- <mark>0.5-</mark> 0.4 ap = 0.5- 2.0- 3.5
			Hardened		60 HRC	39	30- <mark>50</mark> -80	-	-		-	-	-	-	-	-
H							30- <mark>40</mark> -70	-		-	-	-		-	-	-
	Chilled	cast iron	Cast		400	40	60-80-140	fz = 0.6-0.3-0.2 ap = 0.5-1.0-1.5		fz = 0.6-0.3-0.2 ap = 0.5-1.2-2.0		fz = 0.8-0.4-0.4 ap = 0.5-1.6-2.7		fz = 0.8-0.4-0.4 ap = 0.5-2.0-3.5	-	fz = 0.8- <mark>0.4-</mark> 0.4 ap = 0.5- <mark>2.0-</mark> 3.5
	Casi	t iron	Hardened		55 HRC	41	30-60-120	fz = 0.6-0.3-0.2 ap = 0.5-1.0-1.5		fz = 0.6-0.3-0.2 ap = 0.5-1.2-2.0	-	fz = 0.8-0.4-0.4 ap = 0.5-1.6-2.7		fz = 0.8-0.4-0.4 ap = 0.5-2.0-3.5	-	fz = 0.8- <mark>0.4-</mark> 0.4 ap = 0.5- 2.0 -3.5
Radi	ius for p	rogramn	ning:					2,6	mm	3,3	mm	4,1	mm	4,8	mm	5,2 mm

Feed per Tooth for MICRO3FEED / NAN3FEED FFT3... 03 / 02

Non-elloy table										
Non-alloy steel and cast steel, recuting steel and cast steel and body steel and stainless steel and stainless cast steel and body steel and stainless cast steel an	180	Mass		Condition	Tensile Strength	Uauduaaa UB	Material No.	Vc	FFT3 - 03	FFT3 - 02
Non-alloy steet and cast steel early continued and tempered and endergreed and	130	Mat	eriai	Condition	[N/mm²]	naruness no	wateriai No.		WXMT03T	TXMT02T
## and cast steel, the cutting steel steel fee cutting steel seel steel fee cutting steel fee cutting steel fee cutting steel seel steel fee cutting steel seel steel fees the steel steel steel steel fees the steel fe					420	125	1			
Part									fz = 0.2-0.5-0.8	fz = 0.7-0.3-0.2
Part								140- <mark>180</mark> -250		
Annealed Coo		free cutting steel	>= 0.55 %C						up - 0.0 0.4 0.2	up - 0.2 0.3 0.0
Low alloys steel and cast steel (less than 5 % of alloying elements) Quenched and tempered 1200 300 8 130-140-180 120-33-0.8 120-20-3-0.6 120-20-3-0.6 120-20-3-0.6 120-3-0.8 120-3-0.6 120-3-0.8 120-3-0.6 120-3-0.6 120-3-0.8 120-3-0.6 120-3-0.8 120-3-0.6 120-3-0.8 120-3-0.6 120-3-0.6 120-3-0.6 120-3-0.6 120-3-0.6 120-3-0.6 120-3-0.8 120-3-0.6										
Part		1114		Annealed				120 160 200	fz = 0.2-0.4-0.8	fz = 0.7-0.3-0.2
Particle								130-160-200	ap = 0.6 - 0.4 - 0.2	ap = 0.2 - 0.3 - 0.6
Martensitic Cast iron nodular (GGG) Ferritic Pearlitic P	Р			Quenched and tempered				130-140-180		
Note Continue Co		High alloyed stee	el. cast steel and	Annealed	680	200	10		fz = 0.2-0.3-0.8	fz = 0.7- <mark>0.25</mark> -0.2
Martensitic steel Martensitic 820 240 13 100-150-180 ap = 0.6-0.4-0.2 ap = 0.2-0.3-0.6				Quenched and tempered	1100	325	11	120-130-180	ap = 0.6 - 0.3 - 0.2	ap = 0.2-0.3-0.6
Martensitic 820 240 13 3 3 3 3 3 3 3 6 6				Ferritic, martensitisch	680	200	12	100 150 100	fz = 0.2- <mark>0.3</mark> -0.8	fz = 0.7- <mark>0.25</mark> -0.2
Steel Austentic 600 180 14 80-140-180 ap = 0.6-0.4-0.2 -		martens	itic steel	Martensitic	820	240	13	100-150-180	ap = 0.6- <mark>0.4</mark> -0.2	ap = 0.2-0.3-0.6
Cast iron nodular (GG)	М			Austenitic	600	180	14	80-140-180		-
Cast iron nodular (GGG)		Grey cast	t iron (GG)	Ferritic/ martensitic		180	15	140-180-280		-
Cast iron nodular (GGG)	17			Pearlitic		260	16		ap = 0.6- <mark>0.4-</mark> 0.2	
Pearlitic 250 18 120-160-250 ap = 0.6-0.4-0.2 ap = 0.6-0.4-0.2	K	Cast iron no	dular (GGG)							
Malleable cast iron Femtic 130 19 ap = 0.6-0.4-0.2		Odot iron no	Juliu (000)					120-160-250		_
High temp. alloys Fe Basis		Malleable	cast iron	-					ap = 0.6- <mark>0.4</mark> -0.2	
High temp. alloys										
High temp. alloys Annealed 250 33 20-35-80 fz = 0.2-0.3-0.8 ap = 0.6-0.3-0.2			Fe Basis					20-60-100		-
Annealed 250 33 32 20-35-80		High temp.		-					ap = 0.6- <mark>0.4</mark> -0.2	
Cast 320 35 Pure titanium Rm = 400 Rm = 400 36 Alpha+beta alloy Rm = 1050 Rm = 1050 37 Hardened Hardened 45-55 HRC 38 Chilled cast iron Cast 400 40 60-80-140 fz = 0.2-0.3-0.4 ap = 0.5-0.3-0.2 Cast 320 35 Fz = 0.2-0.3-0.8 ap = 0.6-0.4-0.2 Fz = 0.2-0.2-0.4 ap = 0.5-0.3-0.2									fz = 0.2-0.3-0.8	
Pure titanium Rm = 400 Rm = 400 36	S		Ni or Co Basis					20-35-80	ap = 0.6 - 0.3 - 0.2	-
Hardened Steel Hardened SS-58 HRC SS-62 HRC Chilled cast iron Cast Hardened SS-62 HRC Cast iron Hardened SS-62 HRC SS-62 HRC SS-62 HRC Au GO-80-140 Fiz = 0.2-0.3-0.8 ap = 0.6-0.4-0.2				-					ор ото ото	
Hardened Steel Hardened SS-58 HRC 30-50-80				Pure titanium	Rm = 400	Rm= 400	36		fz = 0.2-0.3-0.8	
Hardened HARDOX 45-55 HRC 38 40-60-120 ap = 0.5-0.3-0.2 - ap = 0.5-0.2		Titanium a	nd Ti alloys	Alpha+beta alloy	Rm = 1050	Rm= 1050	37	30-50-80	ap = 0.6-0.4-0.2	-
Hardened 55-58 HRC 30-50-80				Hardened	HARDOX	45 -55 HRC	38	40-60-120		-
H		Harden	ed steel	Hardanad		55-58 HRC	20	30- <mark>50</mark> -80	-	-
Chilled cast iron Cast 400 40 60-80-140 ap = 0.5-0.3-0.2 - Cast iron Hardened 55 HBC 41 30-60-120 fz = 0.2-0.2-0.4	Н			narderied		58-62 HRC	39	30-40-70	-	-
Cast iron Hardened 55 HRC 41 30-60-120 -		Chilled	cast iron	Cast		400	40	60-80-140		-
		Cas	t iron	Hardened		55 HRC	41	30-60-120		-

Radius for programming:

1,1 mm

Feed per Tooth for SOLIDMILL EFF-S...

ISO		erial	Hardness HB	Material	v _c						VHM EFF-S					
150	Mate	eriai	Hardness HB	No.	[m/min]	1	2	3	4	5	6	8	10	12	16	20
		< 0.25 %C	125	1												
		>= 0.25 %C	190	2												
	Non-alloy steel and cast steel,	< 0.55 %C	250	3	140- <mark>180</mark> -250											
	free cutting steel	>= 0.55 %C	220	4	140-180-230											
			300	5												
	Low alloy ste		200	6		fz = 0.02	fz = 0.1	fz = 0.1	fz = 0.1	fz = 0.1	fz = 0.1	fz = 0.1	fz = 0.15	fz = 0.15	fz = 0.2	fz = 0.2
Р	ste (less than 5 9		275	7	130- <mark>160</mark> -200		ap max = 0.11	-		_	ap max = 0.29	-	ap max = 0.5	ap max = 0.57	-	-
	elem		300	9	130-140-180	.,										
					130-140-160											
	High alloyed	steel cast	200	10	_											
	steel and		325	11	120-130-180											
	Stainless ferritic and stainless martensitic steel	200	12	90-110-160												
			240	13												
M	Stainless stainless	steel and cast steel	180	14	80-140-180	fz = 0.02 ap max = 0.06	fz = 0.1 ap max = 0.11	fz = 0.1 ap max = 0.18	fz = 0.1 ap max = 0.2	fz = 0.1 ap max = 0.29	fz = 0.1 ap max = 0.29	fz = 0.1 ap max = 0.4	fz = 0.15 ap max = 0.5	fz = 0.15 ap max = 0.57	fz = 0.2 ap max = 0.8	fz = 0.2 ap max = 1
	Grey cast	t iron (GG)	180	15	140-180-280											
W.			260 160	16 17		fz = 0.02	fz = 0.1	fz = 0.1	fz = 0.1	fz = 0.1	fz = 0.1	fz = 0.1	fz = 0.15	fz = 0.15	fz = 0.2	fz = 0.2
K	Cast iron no	dular (GGG)	250	18		ap max = 0.06	ap max = 0.11	ap max = 0.18	ap max = 0.2	ap max = 0.29	ap max = 0.29	ap max = 0.4	ap max = 0.5	ap max = 0.57	ap max = 0.8	ap max = 1
	Malloable	cast iron	130	19	120- <mark>160</mark> -250											
	WallCabic	, cast non	230	20												
		Fe Basis	200	31	20-60-100											
	High temp.		280	32												
	alloys	Ni or Co	250 350	33 34	20-35-80	fz = 0.02	fz = 0.1	fz = 0.1	fz = 0.1	fz = 0.1	fz = 0.1	fz = 0.1	fz = 0.15	fz = 0.15	fz = 0.2	fz = 0.2
S		Basis	320	35	20 33 00	ap max = 0.06	-	-	_		ap max = 0.29	ap max = 0.4	ap max = 0.5	ap max = 0.57	ap max = 0.8	
			Rm= 400	36		ap max cico	ap max oill	ap max 0:20	ap max oiz	ap max oizs	ap max oizs	ap max or r	ap max 0.5	ap max ois?	ap max olo	ap max 1
	Titanium ar	nd Ti alloys			30- <mark>50</mark> -80											
			Rm= 1050 45 -55 HRC	37 38	40-60-120											
	Harden	ed steel	55-58 HRC		30-50-80											
Н			58-62 HRC	39	30-40-70	fz = 0.02	fz = 0.1	fz = 0.1	fz = 0.1	fz = 0.1	fz = 0.1	fz = 0.1	fz = 0.15	fz = 0.15	fz = 0.2	fz = 0.2
	Chilled o	cast iron	400	40	60-80-140	ap max = 0.06	ap max = 0.11	ap max = 0.18	ap max = 0.2	ap max = 0.29	ap max = 0.29	ap max = 0.4	ap max = 0.5	ap max = 0.57	ap max = 0.8	ap max = 1
	Cast	t iron	55 HRC	41	30-60-120											
Radiu	s for pr	ogrami	mina:			0,15 mm	0.3 mm	0.5 mm	0.7 mm	0,9 mm	Depending	on diameter	and number	of teeth, see o	atalog or E-0	Cat.

Feed per Tooth for MULTIMASTER MMFF / MM EFF...

										-0				
Mat	erial	Hardness HB	Material	v _c		М	M FF				мм	EFF		
Mat	eriai	Haruness HD	No.	[m/min]	10	12	16	20	8	10	12	16	20	25
	< 0.25 %C	125	1											
	>= 0.25 %C	190	2											
Non-alloy steel and cast steel,	< 0.55 %C	250	3	140- <mark>180</mark> -250										
free cutting steel	>= 0.55 %C	220	4	140-100-230										
		300	5											
Low alloy st		200	6		fz = 0.3	fz = 0.5	fz = 0.55	fz = 0.75	fz = 0.12	fz = 0.16	fz = 0.20	fz = 0.20	fz = 0.20	fz = 0.25
	eel	275	7	130- <mark>160</mark> -200	ap max = 0.6		ap max = 1.10		ap max = 0.4	ap max = 0.45	ap max = 0.6	ap max = 0.8		ap max = 1.25
	% of alloying nents)	300	8		ap max = 0.0	ap max = 0.0	ap 111ax = 1.10	ap IIIax = 1.50	ap IIIax = 0.4	ap IIIax = 0.43	ap IIIax = 0.0	ap IIIax – 0.6	ap max = 1	ap IIIax = 1.23
	,	350	9	130-140-180										
		200	10											
High alloyed steel and	d steel, cast I tool steel	325	11	120- <mark>130</mark> -180										
	ferritic and irtensitic steel	200	12	90-110-160										
		240	13											
	steel and cast steel	180	14	80-140-180	fz = 0.3 ap max = 0.6	fz = 0.5 ap max = 0.6	fz = 0.55 ap max = 1.10	fz = 0.75 ap max = 1.50	fz = 0.12 ap max = 0.4	fz = 0.16 ap max = 0.45	fz = 0.20 ap max = 0.6	fz = 0.20 ap max = 0.8	fz = 0.20 ap max = 1	fz = 0.25 ap max = 1.25
Grey cast	t iron (GG)	180 260	15 16	140-180-280										
Coot iron no	odular (GGG)	160	17		fz = 0.3	fz = 0.5	fz = 0.55	fz = 0.75	fz = 0.12	fz = 0.16	fz = 0.20	fz = 0.20	fz = 0.20	fz = 0.25
Cast IIOII IIC	oddiai (GGG)	250	18	120- <mark>160</mark> -250	ap max = 0.6	ap max = 0.6	ap max = 1.10	ap max = 1.50	ap max = 0.4	ap max = 0.45	ap max = 0.6	ap max = 0.8	ap max = 1	ap max = 1.25
Malleable	e cast iron	130	19	- 120 200 250										
		230	20											
	Fe Basis	200	31	20-60-100										
High temp.		280	32											
alloys	Ni or Co	250 350	33 34	20-35-80	fz = 0.3	fz = 0.5	fz = 0.55	fz = 0.75	fz = 0.12	fz = 0.16	fz = 0.20	fz = 0.20	fz = 0.20	fz = 0.25
	Basis	320	35	20-33-60	ap max = 0.6	ap max = 0.6			ap max = 0.4	ap max = 0.45	ap max = 0.6	ap max = 0.8	ap max = 1	ap max = 1.25
		Rm= 400	36		ap max = 0.0	ap max = 0.0	ap 1110x - 1.10	ap max = 1.50	Sp 1110x - 0.4	ap 1110x = 0.43	ap IIIax - 0.0	ap max = 0.0	ap max - 1	ap 1110x - 1.23
Titanium a	nd Ti alloys	Rm= 1050	37	30-50-80										
		45 -55 HRC	38	40-60-120										
Harden	ed steel	55-58 HRC	39	30-50-80										
		58-62 HRC	- 33	30-40-70	fz = 0.3	fz = 0.5	fz = 0.55	fz = 0.75	fz = 0.12	fz = 0.16	fz = 0.20	fz = 0.20	fz = 0.20	fz = 0.25
Chillod	cast iron	400	40	60-80-140	ap max = 0.6	ap max = 0.6	ap max = 1.10	ap max = 1.50	ap max = 0.4	ap max = 0.45	ap max = 0.6	ap max = 0.8	ap max = 1	ap max = 1.25
	t iron	55 HRC	41	30-60-120										
Cas	t IIOII	33 TINU	41	30-00-120										
D = 4!	•								12.1				_	

Radius for programming:

2,0 mm

2,5 mm

3,0 mm

3,4mm

Diameter and geometry-dependent, see article designation R... or e-cat.

Helical interpolation / Radius for programming / Screw & torque

								MDN -	MDX &	RPMX	0									Rg	Screw
Tool diameter	Ø 8	Ø 10	Ø 12	Ø 16	Ø 20	Ø 22	Ø 25	Ø 32	Ø 35	Ø 40	Ø 42	Ø 50	Ø 52	Ø 63	Ø 66	Ø 80	Ø 100	Ø 125	Ø 160	Ny	Torque
FFT3 TXMT 020105	10.2 - 15 10.8°	14.2 - 19 4.7°																		1.1 mm	SR M2X0.4-2.9 T6-HG 0.5 N/m
FFT3 WXMT 030206	11.6 - 15 1.1°	15.6 - 19 6.9°	19.6 - 23 4.7°	27.6 - 31 2.9°	35.6 - 39 2.0°		45.6 - 49 1.5°													1.1 mm	TS 18041I/HG 0.5 N/m
FFX4 XNMU 040310			16.6 - 23 3.6°	24.6 - 31 4.3°	32.6 - 39 2.7°		42.6 - 49 1.8°	56.6 - 63 1.2°	62.6 - 69 1.1°	72.6 - 79 0.9°	76.6 - 83 0.8°	92.6 - 99 0.7°	96.6 - 103 0.7°							T/HP: 1.8 mm W: 1.72 mm	SR M2.5X6-T7-60 0.9 N/m
FFX4 XNMU 080620												84.4 - 99 3.3°		110.4 - 125 2.3°		144.4 - 159 1.6°	184.4 - 199 1.2°	234.4 - 249 0.9°		4.0 mm	SR M5-14 IP20 9.0 N/m
FFQ4 SOMT 090412						29.7 - 43 8.2°	35.7 - 49 5.5°	49.7 - 63 3.2°	55.7 - 69 2.7°	65.7 - 79 2.0°		85.7 - 99 1.5°	89.7 - 103 1.4°	111.7 - 125 1.1°						T/HP: 2.5 mm W: 3.0 mm	SR M3X0.5-L7.4 IP9 2.0 N/m
FFQ4 SOMT 120516										58 - 79 4.3°		78 - 99 2.7°	81 - 103 2.5°	104 - 125 1.8°	109 - 131 1.6°	138 - 159 1.2°	178 - 199 0.9°	228 - 249 0.7°		T/HP: 3.0 mm W: 4.0 mm	SR M4X0.7-L9.6 IP15 4.8 N/m
FFQ4 SOMT 170625																130.8 - 159 1.2°	170.8 - 199 0.8°	220.8 - 249 0.6°	290.8 - 319 0.2°	T/HP: 5.5 mm W: 6.4 mm	SR M5-14 IP20 9.0 N/m
FFQ8 SZMU 120520												80.6 - 99 0.3°		106.6 - 125 0.2°	112.6 - 131 0.2°	140.6 - 159 0.2°	180.6 - 199 0.1°			3.6 mm	SR M4X0.7-L11.5 IP15 4.8 N/m
H600 WXCU 040310				24.6 - 31 5.0°	32.6 - 39 4.8°		42.6 - 49 3.3°													1.9 mm	SR M2.5X6-T7-60 0.9 N/m
H600 WXCU 05T312							40 - 49 5.0°	54 - 63 4.0°	60 - 69 3.5°	70.1 - 79 2.8°		90.1 - 99 2.0°	94.1 - 103 1.9°							2.3 mm	SR 10508600 2.0 N/m
H600 WXCU 070515								51 - 63 6.3°		67 - 79 4.2°		87 - 99 2.9°	91 - 103 2.8°	113 - 125 2.1°		147 - 159 1.6°	187 - 199 1.2°			3.1 mm	SR 34-535-SN 4.8 N/m
H600 WXCU 080612												84 - 99 4.8°	88 - 103 4.5°	110 - 125 3.3°	116 - 131 3.1°	144 - 159 2.3°	184 - 199 1.7°	234 - 249 1.3°	304 - 319 1.0°	T/HP: 3.3 mm RM: 3.7 mm	SR 14-591/H 9.0 N/m
							MF/N	Modera	te Fee	d (Milli	ng too	s for m	edium	table fe	ed)						
FFQ8 SZMU 120520												81.6 - 99 0.3°		107.6 - 125 0.2°		141.6 - 159 0.2°	181.6 - 199 0.1°			5.0 mm	SR M4X0.7-L11.5 IP15 4.8 N/m
H600 WXCU 040310				25 - 31 3.8°	33 - 39 2.4°		43 - 49 1.7°													2.6 mm	SR M2.5X6-T7-60 0.9 N/m
H600 WXCU 05T312							40.5 - 49 3.0°	54.5 - 63 1.9°		70.6 - 79 1.4°		90.5 - 99 1.0°	94.5 - 103 1.0°	116.5 - 125 0.8°						3.3 mm	SR 10508600 2.0 N/m
H600 WXCU 070515								51.7 - 63 3.0°		67.7 - 79 2.0°		87.7 - 99 1.4°	91.7 - 103 1.3°	113.7 - 125 1.0°		147.7 - 159 0.8°	187.7 - 199 0.6°			4.1 mm	SR 34-535-SN 4.8 N/m

84.7 - 99

2.5°

110.7 - 125 116.7 - 131

144.7 - 159

1.2°

184.7 - 199 234.7 - 249 304.7 - 319

0.5°

T/HP: 4.8 mm

RM: 5.2 mm

SR 14-591/H

9.0 N/m

 $\mathsf{MDN}-\mathsf{MDX}\ =\ \mathsf{Minimum}-\mathsf{maximum}\ \mathsf{diameter}\ \mathsf{in}\ \mathsf{mm}\ \mathsf{for}\ \mathsf{helical}\ \mathsf{interpolation}$

RPMX° = Maximum ramping angle Rg = Radius for programming

H600 WXCU 080612

If a pilot hole is made, the minimum diameter (MDN) can also be selected smaller.

Formula for the pilot hole: Dmin (MDN) - Dsoll + 1

Recommendation for Helical milling can be found at page 36 "Milling strategies for tool life and process optimization" under Entering the workpiece.

Recommended Cutting Speeds and Appliations According to Cutting Grades

Based on practical experience - average data

Grades with PVD coatings and Cermet

	Grades With 175 coa	IC330	IC380	IC845	IC840	IC830	IC716	IC882	IC810	IC808	IC30N
	terial Group	min. to max.	min. to max.	min. to max.	min. to max.	min. to max.	min. to max.	min. to max.	min. to max.	min. to max.	min. to max.
IVI	1. Choice	start	start	start	start	start	start	start	start	start	start
D	Non-alloy / alloy steel	120 160 230	160 200 250	80 150 220		120 200 230			160 220 250	180 230 250	90 220 250
ľ	2. Choice		100 200 250	30 220		200 230			100 220 230		30 220 330
	1. Choice							li e			
P	Ferritic / martensitic steel	80 120 140		100 120 160		100 130 160				140 170 220	100 170 220
ľ	2. Choice			100 120 100		100 130 100				140 170 220	100 170 220
	Stainless steel 1. Choice										
	Reference: 1.4301, v _c 200, try	60 100 160	120 160 220		00 120 160	60 140 200		70 100 140		120 160 220	
1	1.4404, v _c 90, wet	00 100 100	120 100 220		90 120 100	00 140 200		70 100 140		120 100 220	
-	1.4462, v _c 80, wet 2. Choice 1. Choice										
	The second second					120 460 250			100 250 300	100 220 200	
K	Gray cast iron					120 160 250			180 250 300	180 220 280	
	2. Choice										
	1. Choice										
K	Cast iron nodular					120 140 200			160 200 260	160 180 250	
	2. Choice										
	1. Choice										
S	High temp / titan alloys	30 40 100	30 50 100		25 40 90	30 40 100	20 45 70	20 40 60		30 50 100	
	2. Choice										
	1. Choice										
N	Aluminum / non ferrous										
	2. Choice										
	1. Choice										
н	Hardened steel (≤55HRc)					40 80 120			60 100 150	80 120 200	50 100 140
	2. Choice										

Legend:	Cutting speed declaration (m/min)									
	red line:		dry machining							
	blue line:		wet machining							
	bold font:		recommended start value							

Recommended Cutting Speeds and Appliations According to Cutting Grades

Based on practical experience - average data

Grades with CVD coatings, Ceramics, CBN and uncoated

Grades With CVD toa				IC5400				IC5500			IC5600			C5100)	D	T7150)	10	C582	n	IS	8/1580)	IB55/IB85			IC28			IC08		
									-																	•							
N	/late	rial Group		mın.	start	max.	mın.	start	max.	mın.	start	max.	mın.	start	max.	mın.	start	max.	mın.	start	max.	mın.	start	nax.	mın.	to start	iax. r	mın.	start	max.	min.	start	max.
ı	,	1. C Non-alloy / alloy steel	hoice	160	200	250	90	200	280	160	210	- 280	180	250	- 320	100	160	_ 250															
		2. C	hoice																														
ı	,	1. C	hoice eel	140	180	240	140	200	270	150	180	- 240																					
			hoice																														
		1. C	hoice																_		_										i		
ı	VI	Stainless steel	hoice	100	130	180													100 120 160														
ŀ	_		hoice																														
ı	(Gray cast iron											200	280	350	150	220	320				250	500	300	P	e ask you roduct nagemen							
L			hoice																												<u> </u>		
	(Cast iron nodular	hoice hoice	120	160	250										160	250	350				250	450	900									
ı		1. C	hoice																_														_
9	6	High temp / titan alloys																	25	50	95										10	20	50
L			hoice																														
	N	Aluminum / non ferrou	s hoice																								1	160	450 (- 650	350	750	1500
I	1	Hardened steel (≤55HR	hoice c) hoice																						P	e ask you roduct nagemen							

Legend:	Cutting speed declaration (m/min)									
	red line:		dry machining							
	blue line:		wet machining							
	bold font:		recommended start value							

High-feed milling systems

Recommended application range

The **Specialist** for Pocket Milling

The Economical Alternative to Solid Carbide

FFT3 - 02

Recommended application range

The **Economical** All-Rounder

The Flexible Problem Solver

Soft cutting edge

The Flexible Problem Solver

Soft cutting edge

0.8 1.0 1.2 1.4 1.6 f_{z (mm)}

Recommended application range

The Flexible Problem Solver

Soft cutting edge

The Flexible Problem Solver

Soft cutting edge

Milling Inserts - Cutting Grades

Milling Inserts – Cutting Grades

Milling Inserts - Cutting Grades

Geometries

T – for steel, ferritic and martensitic stainless steel, cast iron and hardened steel

RM-T – for interrupted cut and machining on shoulders in steel, ferritic and martensitic stainless steel, cast iron and hardened steel

HP – for austenitic stainless steel and highly heat-resistant alloys

HP-P - for aluminum

RM-HP – for machining on the shoulder in austenitic stainless steel and highly heat-resistant alloys

T20 – optimized chip former for cast iron

SOMW T – flat insert for interrupted cut and hard milling up to 62 hrc

Comparison Moderate Feed vs. Fast Feed Milling

Fast Feed Milling

Principle:

High table feed with low depth of cut. v_f from 6.000 to 20.000 mm/min. Machines with medium to high dynamics

Example Ø63 mm:

$$Q = \frac{a_e * ap * Vf}{1000}$$

 $a_p = 1,5 \text{ mm } a_e = 50 \text{ mm}$ $f_z = 1,2 \text{ mm } v_f = 8005 \text{ mm/min}$

$$Q = 600 \text{ cm}^3/\text{min}$$

Moderate Feed Milling

High depth of cut with medium table feed. v_f from 2.000 to 6.000 mm/min. Machines with low to medium dynamics

$$a_p = 3.0 \text{ mm } a_e = 50 \text{ mm}$$

 $f_z = 0.65 \text{ mm } v_f = 4335 \text{ mm/min}$

$Q = 650 \text{ cm}^3/\text{min}$

Moderate feed milling is a good strategy for machines with low to medium dynamics. Due to the higher depth of cut, similar metal removal rates are achieved as with high feed milling despite the reduced feed rate.

Bending Moment Load

The longer the tool overhang, the more important it is to consider the bending moment. Too high a bending moment can lead to massive spindle damage.

The bending moment can be calculated using the formula or using machining power. The load limits can be requested from the machine manufacturer.

Calculate the spindle bending moment using the Machining Power tool: https://mpwr.iscar.com

	M _b =	F _q >	κE	[Nm]
--	------------------	------------------	----	------

General Guide Values

Interfaces	Bending moment					
IIILEITACES	limit [Nm]					
HSK32	85					
HSK40	140					
HSK50	230					
HSK63	450					
HSK80	810					
HSK100	1230					
HSK125	2900					
Big Plus 40	45					
Big Plus 50	60					
C5	420					
C6	700					
C8	1000					
C10	1700					
Driven	tool holders					
VDI30	80					
VDI40	150					

We cannot take a guarantee for the specified guideline values.

Feed per Tooth Calculation

According to Radial Depth of Cut ae

radial depth = ae

Eingriffsverhältnis

$$E = \frac{a_e}{Dc} \times 100\%$$

Internal circular interpolation

$$a_e = \frac{D_{soll}^2 - Dist^2}{4 \times (Dsoll - Dc)}$$

mittlere Spandicke

$$h_m = fz \times \sqrt{ae/Dc}$$

External circular interpolation

$$a_e = \frac{D_{ist}^2 - Dsoll^2}{4 \times (Dsoll + Dc)}$$

Vorschub pro Zahn

$$f_z = hm \times \sqrt{Dc/ae}$$

Info:

Only if the tooth feed is correctly calculated and set does the chip formation (constriction) required by the cutting geometry take place.

If the $\rm f_z$ values are too low, they promote premature wear and can cause the chips to jam.

If the f_z values are too high, the cutting inserts will break due to overloading.

Milling strategies for tool life and process optimization

Face milling

No exceed of the maximum width of cut DC

- No overloading of the cutting edge by residual material from the previous cut.
- · Surface free of steps.
- Down-Milling is to be preferred as the first choice.

Cutting into material in a circular arc

- · Cutting exit always at zero chip thickness [mm].
- No hook from tool when entering the material.
- Increased process reliability and tool life.
- · Circular movement always clockwise rotation (G3).
- Recommended radius pivot point: 0,5 3 mm

Milling strategies for tool life and process optimization

Entering in the workpiece

Helical milling

- Down-Milling is the first choice, with problematic chip evacuation (deep hole), Up-milling can lead to better results
- The pitch and the helix angle should not exceed the maximum depth of cut APMX and the maximum ramping angle RMPX
- It is recommended to reduce the feed per tooth by 30-40%
- Helical milling into full material, the minimum and maximum diameter for interpolation should not be below or above
- Dmax = 2 x DCX-1 / Dmin = DCX+DC
- If a pilot hole is made, the minimum diameter (MDN) can also be selected smaller.

Formula for the pilot hole: Dmin (MDN) - Dsoll + 1

Ramp milling

- The ramping depth per pass and the ramping angle should not exceed the maximum depth of cut APMX and the maximum ramping angle RMPX.
- When entering in the material with ramping,
 Down-Milling is always preferable as the first choice.
- It is recommended to reduce the feed per tooth by 30-40%

Milling strategies for tool life and process optimization

Pocket milling

- For better chip evacuation, it is recommended to mill from the center to the outside cont.
- Down-Milling is the first choice, with problematic chip evacuation (deep pocket), Up-milling can lead to better results.
- For deep through-pockets, we recommend pre-drilling the corners or drilling a center hole to evacuate the chips downwards.
- When entering the pocket using helical interpolation or ramp milling, the pitch and the ramping angle should not exceed the maximum depth of cut APMX and the maximum ramping angle RMPX.
- It is recommended to mill the corners with circular arc, if this is not possible, the corner can be pre-drilled
- Recommended radius: R_{arc} = D_{tool} x 0,7

Milling strategies for tool life and process optimization

Plunge milling

- Plunge milling is a good solution for unstable conditions or machines with poor performance.
- Plunge milling is an efficient method for processing deep contours and pockets.
- For long overhangs ≥ 3xD, it is recommended to reduce the cutting speed by 30 – 40%.
- The recommended feed range for plunge milling is 10% of the minimum to maximum tooth feed.
- $f_{z plunge} = Range of feed \times 0, 1$
- $a_{emax} = (DCX DC)/2$
- $L1_{max} = 2 \times \sqrt{DCX \times ae ae^2}$

Wear

Wear never occurs as individual appearance but always occurs in various combinations. Therefore, it is essential to monitor the tool's insert soonest possible in order to detect the main wear type and to take counter action accordingly.

Type of wear

Flank wear

Crater wear

Notch wear

Chipping

Reason

- Cutting speed too high
- · Temperature too high
- Wear resistance of carbide grade not sufficient

- · Cutting speed too high
- Temperature too high
- · Insufficient feed

- · Cutting speed too high
- Wear resistance of carbide grade not sufficient
- Wear resistance of carbide grade too strong
- Cutting edge too positive
- Build-up edge

Help

- · Reduce cutting speed
- Choose more wear resistant carbide grade
- Choose reduced lead angle

- · Reduce cutting speed
- Choose harder carbide grade
- · Increase feed

- · Reduce cutting speed
- Choose more wear resistant carbide grade
- · Variable depth of cut

- Choose tougher carbide grade
- Increase cutting speed
- Choose more stable cutting edge

Important:

When adjusting or correcting the cutting parameters, we recommend to change the parameters one after another, (not several ones at the same time). To change the cutting conditions by 10 % -20 % (according to workpiece material).

Wear

Wear never occurs as individual appearance but always occurs in various combinations. Therefore, it is essential to monitor the tool's insert soonest possible in order to detect the main wear type and to take counter action accordingly.

Type of wear

Breakage

eason

- Cutting edge too positive
- · Carbide grade too hard
- Vibrations

Help

- Reduce depth of cut
- · Reduce feed
- Choose a more stable wedge

Thermal cracks

- · Various thermal stress
- · Strongly interrupted cut
- Thermal cracks by coolant
- · Choose tougher carbide grade
- · Improve coolant supply
- Dry machining

Build-up-edge

- · Low cutting speed
- · Feed to low
- Cutting edge too negative
- · Increase cutting speed
- · Increase feed
- Smooth, positive cutting edge

Plastic deformation

- · Feed too high
- Cutting speed too high
- · Carbide grade too tough
- Reduce cutting speed
- · Reduce feed
- · Choose harder carbide grade

Important:

When adjusting or correcting the cutting parameters, we recommend to change the parameters one after another, (not several ones at the same time). To change the cutting conditions by 10 % -20 % (according to workpiece material).

General recommendations for insert milling

- ✓ Down-milling is to be preferred as the first choice especially for shoulder milling due to the 90° setting angle.
- ✓ The milling strategy should be chosen so that the cutting forces are directed towards the support points of the clamping device; up-milling can be advantageous in some cases (Figure 1).
- ✓ The strategy regarding the positioning of the milling cutter on the component is of the utmost importance; planning in this regard should be carried out in great detail.
- ✓ For components that are clamped on a clamping tower, 90° milling cutters with a positive insert basic shape (HM390) are recommended. A wide cutter pitch can significantly improve machining, even with negative systems. In any case, the forces should be directed towards the machine bed (Figure 2). We advise against systems with an adjustment angle < 90° due to the higher axial force influence component.
- ✓ The choice of milling pitch should also depend on the stability of the entire system (machine, workpiece clamping, workpiece material, etc.)
- ✓ For SK40 and smaller machines, cutters with a wider pitch are recommended due to the limited stability.

General recommendations for insert milling

- ✓ For the highest possible wall quality, we recommend a cutting depth that is less than 75% of the cutting edge length.
- ✓ For shoulder milling, we recommend starting with a tougher type of carbide than for face milling.
- ✓ When using extended flute cutters, the conditions are often very demanding, so we recommend starting with the toughest grade available, which is recommended for the respective ISO workpiece material range.
- ✓ To avoid vibrations: the deeper the cut, the lower the cutting speed should be. v_c can be chosen.
- ✓ If vibrations occur, we recommend as a first step to reduce the cutting speed v_c and increase the feed f_z to an acceptable range and pay attention to the recommended chip thickness.
- ✓ As a first choice, we recommend using ground inserts. The cutting pressure is lower due to the smaller cutting edge honing.
- ✓ Up-milling can also help stabilize the tool.
- ✓ Make sure that the required machine power is available for the selected cutting values and that the permissible bending moment is not exceeded.
- ✓ Use the ISCAR Machining Power program for this. https://mpwr.iscar.com/

Problem Reason **Troubleshooting** · Feed insufficient · Increase feed · Tool diameter too small · Reduce tool overhang Vibrations · Instable tool clamping · Improve tool clamping · Insufficient number of Use tool with fine tooth pitch on tool teeth in contact · Choose a shorter minor cutting edge • Minor cutting-edge pushes · Reduce lead angle · Improve general clamping situation · Instable workpiece clamping · Cutting force towards stopper · Instable tool Reduce axial cutting forces Vibrations · Instable tool clamping · Reduce radial cutting force · Insufficient number of on workpiece · Choose a shorter minor cutting edge teeth in contact · Choose more positive insert · Minor cutting-edge pushes · Choose cutter with coarse tooth pitch · Reduce depth of cut · Reduce width of cut · Insufficient machine power · Reduce feed per tooth Drive power · Metal removal rate too high · Reduce radial cutting force · Insert too negative • Reduce Z_{eff} · Choose more positive insert

Problems and Troubleshooting

	Problem	Reason	Troubleshooting
	Tool wear	Please refer to "Types of Wear And Help"	Please refer to "Types of Wear And Help"
2 11 2 1 1 2 1 1 2 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1	Re-cut on second side	Radial cutting forces too highCutter vibratesCutter diameter too bigSpindle inclination	Reduce depth of cutWork with spindle inclinationCheck position of wiper insert
	Breakages on workpiece	 Worn cutting edge Insert too negative Increased feed per tooth High chip thickness at exit Poor radial runout 	 Choose cutter with very fine tooth pitch Reduce lead angle Reduce chip cross section Choose sharper cutting edge Soft exit from material
	Deformation of arbor Fretting corrosion by micro movements	Adaptation too smallDepth of cut too bigFeed per tooth too bigFeather key not hardened	Choose bigger adaptation Reduce Z _{eff.} Reduce feed per tooth Reduce depth of cut

General Formulas

Cutting speed

$$v_c = \frac{Dc \cdot \pi \cdot n}{1000} \, [^m/_{min}]$$

RPM

$$n = \frac{v_c \cdot 1000}{Dc \cdot \pi} \, [\text{mm}^{\text{-}1}]$$

Metal removal rate

$$Q = \frac{a_e \cdot a_p \cdot v_f}{1000} \, [^{cm^3}/_{min}]$$

Time of engagement

$$t_h = \frac{L \cdot i}{v_f} \, [\text{min}]$$

Feed per tooth

$$f_z = \frac{v_f}{n \cdot z} [\text{mm}]$$

Feed

$$v_f = f_z \cdot z \cdot n \, [mm/_{min}]$$

Inserts needed for quantity ordered X

 $= \frac{\text{Workpiece } \cdot \text{number of teeth } \cdot \text{production days/month}}{\text{Toolife number of c. e./insert}}$

Cutting grade costs per workpiece

 $= \frac{\frac{Cost}{Insert} \cdot number of pockets}{Number of cutting edges/insert \cdot toolife}$

Number of pieces per cutting edge

$$= \frac{\text{Toolife (in min.)} \cdot 60}{\text{Time of engagement/workpiece (in sec.)}}$$

Engagement ratio

$$E = \frac{a_e}{Dc} \cdot 100\%$$

Medium chip thickness

$$h_m = f_z \cdot \sqrt{a_e/Dc}$$

Explanations:

Dc = Tool diameter z =Number of effective c.e.

v_c = Cutting speed

n = RPM of tool

 $f_z = Feed_per_tooth$

 v_f = Feed

a_e = Cutting width (radial)a_n = Depth of cut (axial)

E = Engagement ratio (%) h_m = Medium chip thickness

I = Cutting length

i = Number of passes Q = Metal removal rate

t_h = Main period of use

 $\pi = Pi (3,1415...)$

Empirical Formulas for Theoretical Power Consumption

Calculation of performance and torque for cutting parameters review

Steel up to 1000 N/mm² (GGG50/60)

Cast

Aluminum alloys

Torque calculation

Performance

$$P_{nutz} = \frac{a_p \cdot a_e \cdot v_f}{24.000} \text{ [kW]}$$

Performance

$$P_{nutz} = \frac{a_p \cdot a_e \cdot v_f}{30.000} \text{ [kW]}$$

Performance

$$P_{nutz} = \frac{a_p \cdot a_e \cdot v_f}{60.000} \text{ [kW]}$$

Performance

$$P_{nutz} = \frac{a_p \cdot a_e \cdot v_f}{24.000} \text{ [kW]} \qquad P_{nutz} = \frac{a_p \cdot a_e \cdot v_f}{30.000} \text{ [kW]} \qquad P_{nutz} = \frac{a_p \cdot a_e \cdot v_f}{60.000} \text{ [kW]} \qquad M = 9550 \cdot \frac{P_{nutz}}{n} \text{ [Nm]}$$

Remark:

Performance and torque should be calculated before starting the machining process. By calculating these two parameters, one will be in the position to avoid later tool or machine damage. Just compare the performance and torque chart of the machine tool with the parameters calculated.

Important:

Only if both of these parameters are within the machine tool's performance and torque curve available, a metal cutting process with the metal removal rate calculated will be possible.

Where Innovation Never Stops

ISCAR / Member IMC Group

Web: <u>www.iscar.com</u>

E-Catalog