	Material	Condition	Tensile Strength Rm [Kpsi]	Hardness HB	$\begin{aligned} & \text { VC } \\ & \text { SFM } \end{aligned}$	SUMOCHAM									
						Feed Vs. Drill Diameter									
									$\begin{aligned} & \text { O} \\ & \text { O} \\ & i \\ & \text { in } \\ & \text { M } \\ & \text { ii } \end{aligned}$			10 0 0 i i 10 10			
ISO						IPR									
$\leq 0.25 \% \mathrm{C}$ non-alloy steel and cast steel, free cutting steel$\geq 0.25 \% \mathrm{C}$ $\geq 0.55 \% \mathrm{C}$ $\geq 0.55 \% \mathrm{C}$		annealed	61	125	260-360-460	$\begin{aligned} & .0015 \\ & .0023 \\ & .0031 \end{aligned}$	$\begin{aligned} & .0028 \\ & .0035 \\ & .0043 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0043 \\ & .0051 \end{aligned}$	$\begin{aligned} & .005 \\ & .007 \\ & .009 \end{aligned}$	$\begin{aligned} & .006 \\ & .008 \\ & .011 \end{aligned}$	$\begin{aligned} & .007 \\ & .009 \\ & .012 \end{aligned}$	$\begin{aligned} & .008 \\ & .011 \\ & .014 \end{aligned}$	$\begin{aligned} & .010 \\ & .014 \\ & .018 \end{aligned}$	$\begin{aligned} & .010 \\ & .014 \\ & .018 \end{aligned}$	$\begin{aligned} & .012 \\ & .015 \\ & .020 \end{aligned}$
		annealed	94	190	260-340-430										
		quenched and tempered	123	250	260-330-390										
		annealed	109	220	230-300-360										
		quenched and tempered	145	300	160-230-300										
P	low alloy and cast steel (less than 5\% of alloying elements)	annealed	87	200	230-310-390	$\begin{aligned} & .0015 \\ & .0023 \\ & .0031 \end{aligned}$.0028 .0039 0051	.0035 0047 0059	$\begin{aligned} & .005 \\ & .007 \\ & .010 \end{aligned}$	$\begin{aligned} & .006 \\ & .008 \\ & .011 \end{aligned}$	$\begin{aligned} & .006 \\ & .009 \\ & .013 \end{aligned}$	$\begin{aligned} & .007 \\ & .010 \\ & .014 \end{aligned}$	$\begin{aligned} & .009 \\ & .012 \\ & .016 \end{aligned}$	$\begin{aligned} & .010 \\ & .014 \\ & .018 \end{aligned}$	$\begin{aligned} & .012 \\ & .015 \\ & .020 \end{aligned}$
		quenched and tempered	135	275	230-300-360										
			145	300	160-230-300										
			174	350	130-180-230										
	high alloyed steel, cast steel and tool steel	annealed	99	200	160-230-300	$\begin{array}{\|l\|} \hline .0023 \\ .0027 \\ .0031 \\ \hline \end{array}$	$\begin{aligned} & .0028 \\ & .0035 \\ & .0039 \end{aligned}$	$\begin{aligned} & .0035 \\ & .0041 \\ & .0047 \\ & \hline \end{aligned}$	$\begin{aligned} & .005 \\ & .006 \\ & .008 \end{aligned}$	$\begin{aligned} & .005 \\ & .007 \\ & .009 \end{aligned}$	$\begin{aligned} & .006 \\ & .008 \\ & .010 \\ & \hline \end{aligned}$	$\begin{aligned} & .007 \\ & .009 \\ & .011 \end{aligned}$	$\begin{aligned} & .008 \\ & .010 \\ & .012 \\ & \hline \end{aligned}$	$\begin{aligned} & .009 \\ & .011 \\ & .013 \\ & \hline \end{aligned}$	$\begin{aligned} & .010 \\ & .012 \\ & .014 \end{aligned}$
		quenched and tempered	160	325	130-200-260										
	stainless steel and cast steel	ferritic / martensitic	99	200	130-180-230	$\begin{aligned} & .0019 \\ & .0023 \\ & .0027 \\ & \hline \end{aligned}$	$\begin{aligned} & .0024 \\ & .0028 \\ & .0031 \end{aligned}$	$\begin{aligned} & .0031 \\ & .0035 \\ & .0039 \end{aligned}$	$\begin{aligned} & .004 \\ & .005 \\ & .006 \\ & \hline \end{aligned}$	$\begin{aligned} & .005 \\ & .006 \\ & .007 \end{aligned}$	$\begin{aligned} & .006 \\ & .007 \\ & .008 \\ & \hline \end{aligned}$	$\begin{aligned} & .006 \\ & .008 \\ & .009 \end{aligned}$	$\begin{aligned} & .006 \\ & .008 \\ & .010 \end{aligned}$	$\begin{aligned} & .007 \\ & .009 \\ & .012 \\ & \hline \end{aligned}$.008 .011 .014
		martensitic	119	240	130-180-230										
	stainless steel and cast steel	austenitic, duplex	87	180	100-160-230	. 0019	. 0024	. 0031	. 004	. 005	. 006	. 006	. 006	. 007	. 008
\mathbf{M}						. 0023	. 0028	. 0035	. 005	. 006	. 007	. 008	. 008	. 009	. 011
						. 0027	. 0031	. 0039	. 006	. 007	. 008	. 009	. 010	. 012	. 014
K	gray cast iron (GG)	ferritic / pearlitic		180	300-410-520	.0015 .0023 .0031	.0039 .0051 .0059	.0047 .0059 0071	$\begin{aligned} & .006 \\ & .009 \\ & .012 \end{aligned}$	$\begin{aligned} & .008 \\ & .011 \\ & .014 \end{aligned}$	$\begin{aligned} & .010 \\ & .013 \\ & .016 \end{aligned}$	$\begin{aligned} & .012 \\ & .015 \\ & .018 \end{aligned}$.014 .018 022	.014 .015 .024	$\begin{aligned} & .016 \\ & .020 \\ & .024 \end{aligned}$
		pearlitic / martensitic		260	260-360-460										
	nodular cast iron (GGG)	ferritic		160	300-440-590										
		pearlitic		250	260-360-460										
	malleable cast iron	ferritic		130	300-410-520										
		pearlitic		230	260-360-460										
N	aluminum-wrought alloys	not hardenable		60	300-510-720	$\begin{aligned} & .0019 \\ & .0047 \\ & .0074 \end{aligned}$	$\begin{aligned} & .0039 \\ & .0067 \\ & .0098 \end{aligned}$	$\begin{aligned} & .0059 \\ & .0086 \\ & .0118 \end{aligned}$	$\begin{aligned} & .008 \\ & .011 \\ & .014 \end{aligned}$	$\begin{aligned} & .010 \\ & .013 \\ & .016 \end{aligned}$	$\begin{aligned} & .012 \\ & .015 \\ & .018 \end{aligned}$	$\begin{aligned} & .014 \\ & .017 \\ & .020 \end{aligned}$.016 .020 .024	$\begin{aligned} & .018 \\ & .022 \\ & .028 \end{aligned}$	$\begin{aligned} & .020 \\ & .026 \\ & .030 \end{aligned}$
		hardenable		100											
	aluminum-cast alloys $\leq 12 \% \mathrm{Si}$	not hardenable		75											
		hardenable		90											
	$\square>12 \% \mathrm{Si}$	high temperature		130	260-390-520										
	copper alloys $\quad \geq 1 \% \mathrm{~Pb}$	free cutting		110	300-510-720										
		brass		90											
		electrolytic copper		100											
S	high temperature alloys $\begin{aligned} \text { Ni or } \\ \\ \text { based }\end{aligned}$	annealed		200	100-150-200	$\begin{aligned} & .0011 \\ & .0015 \\ & .0019 \end{aligned}$	$\begin{aligned} & .0015 \\ & .0019 \\ & .0023 \end{aligned}$	$\begin{aligned} & .0019 \\ & .0023 \\ & .0027 \end{aligned}$	$\begin{aligned} & .002 \\ & .003 \\ & .004 \end{aligned}$	$\begin{aligned} & .003 \\ & .004 \\ & .005 \end{aligned}$	$\begin{aligned} & .004 \\ & .005 \\ & .006 \end{aligned}$	$\begin{aligned} & .005 \\ & .006 \\ & .007 \end{aligned}$	$\begin{aligned} & .005 \\ & .006 \\ & .008 \end{aligned}$	$\begin{aligned} & .006 \\ & .007 \\ & .009 \end{aligned}$	$\begin{aligned} & .006 \\ & .008 \\ & \hline \end{aligned}$
		hardened		280	70-110-160										
		annealed		250											
		hardened		350											
		cast		320											
	titanium alloys	pure	58		70-110-160	$\begin{aligned} & .001 \\ & .0015 \\ & .0019 \end{aligned}$	$\begin{aligned} & .0015 \\ & .0019 \\ & .0023 \end{aligned}$	$\begin{aligned} & .0020 \\ & .0024 \\ & .0028 \end{aligned}$	$\begin{aligned} & .002 \\ & .004 \\ & .005 \end{aligned}$	$\begin{aligned} & .003 \\ & .004 \\ & .006 \end{aligned}$	$\begin{aligned} & .004 \\ & .006 \\ & .007 \\ & \hline \end{aligned}$	$\begin{aligned} & .005 \\ & .006 \\ & .008 \end{aligned}$	$\begin{aligned} & .006 \\ & .007 \\ & .009 \\ & \hline \end{aligned}$	$\begin{aligned} & .006 \\ & .008 \\ & .010 \\ & \hline \end{aligned}$	$\begin{array}{r} .007 \\ .009 \\ .011 \end{array}$
		alpha+beta alloys,													
		hardened	152												
H	hardened steel	hardened		55 HRc	70-110-160			$\begin{aligned} & .0020 \\ & .0024 \\ & .0028 \\ & \hline \end{aligned}$	$\begin{aligned} & .002 \\ & .004 \\ & .005 \end{aligned}$	$\begin{aligned} & .003 \\ & .004 \\ & .006 \end{aligned}$	$\begin{aligned} & .004 \\ & .006 \\ & .007 \end{aligned}$	$\begin{aligned} & .005 \\ & .006 \\ & .008 \end{aligned}$	$\begin{aligned} & .006 \\ & .007 \\ & .009 \end{aligned}$. 006	. 007
														. 008	. 009
		hardened		60 HRc										. 010	. 011

■ Recommended cutting data

- When using external coolant supply only, reduce cutting speed by 10\%.
- Use internal coolant supply when machining austenitic stainless steel.
- When using more than 5XD drill ratio, reduce cutting parameters by 10\%.

As a starting value, the middle of the recommended machining range should be used.
Then, according to the wear results, conditions can be changed to optimize performance.
The data refers to IC948

