Machining Recommendations for FINEBEAM Drills

O	Material		Condition	Tensile Strength [ksi]	Material Group No.	Hardness (HB)	Chipbreaker	$\begin{gathered} \text { Cutting } \\ \text { speed } \\ \mathrm{V}_{\mathrm{c}}(\mathrm{SFM}) \end{gathered}$	Feed : f (IPR)		
			Drill dia. (inch)								
			Ø.984-1.693						Ø1.6933-3.504		
	$<0.25 \% \mathrm{C}$ Non-alloy steel and cast steel, free cutting steel $\geq 0.25 \% \mathrm{C}$ $\geq 0.55 \% \mathrm{C}$ 			Annealed	61	1	125	HF	230-425	. $004-.016$. $006-.018$
							HF	230-425	. $.004-.016$. $005-.014$	
			Annealed	94	2	190	G	230-425	. $0004-.012$. $0005-.014$	
						250	HF	230-425	. $004-.016$. $006-.018$	
			Quenched and tempered	123	3	250	G	230-425	. $004-.012$. $005-.014$	
			Annealed	109	4	220	HF	230-425	. $004-.016$. $0006-.018$	
							G	230-425	. $0004-.012$. $005-.014$	
			Quenched and tempered	145	5	300	HF	230-425	. $004-.016$. $006-.018$	
P	Low alloy and cast steel (less than 5% of alloying elements)										
			Annealed	87	6	200	HF	230-395	. $0004-.016$. 008 - . 018	
			Quenched and tempered				HF	180-360		. $0005-.014$	
			135	7	275	G	195-395	. $0004-.012$. $0005-.014$		
						HF	180-360	. $004-.016$. 000 - . 018		
			145	8	300	G	195-395	. $0004-.012$. $005-.014$		
			174	9	350	HF	180-360	. $004-.016$. $008-.018$		
						G	195-395	. $004-.012$. $005-.014$		
	High alloyed steel, cast steel and tool steel			Annealed	99	10	200	HF	180-360	. $004-.015$. $008-.016$
			Annealed			200	G	230-425	. $004-.012$. $005-.014$	
			Quenched and tempered	160	11	325	HF	180-360	. $0004-.015$. $008-.016$	
							G	230-425	. $0004-.012$. $005-.014$	
	Stainless steel and cast steel			Ferritic/martensitic	99	12	200	HF	130-360	. $0004-.016$. 000 - . 018
							HF	-130-360			
			Martensitic	119	13	240	G	230-425	. $0004-.012$. $0005-.014$	
M	Stainless steel and cast steel			Austenitic, duplex	87	14	180	HF	130-360	. $004-.016$. $008-.018$
			Austenitic, duplex	87	14	180	G	230-425	. $004-.012$. $005-.014$	
Grey cast iron (GG)				Ferritic/pearlitic		15	180	HF	165-360	. $004-.015$. $009-.016$
							G	165-360	. $004-.01$. $005-.014$	
			Pearlitic/martensitic		16	260	HF	165-360	. $004-.015$. $009-.016$	
							G	165-360	. 004 - . 01	. $005-.014$	
	Nodular cast iron (GGG)					17		HF	165-360	. $004-.015$. $009-.016$
							G	165-360	. $004-.01$. $005-.014$	
			Pearlitic		18	250	HF	165-360	. $004-.015$. $009-.016$	
			Pearlic			250	G	165-360	. $004-.01$. $005-.014$	
	Malleable cast iron		Ferritic		19	130	HF	165-360	. $004-.015$. $009-.016$	
							G	165-360	. $004-.01$. $005-.014$	
			Pearlitic		20	230	G	165-360	$\frac{.004-.015}{.004-.01}$		
Aluminum-wrought alloys			Not hardenable		21	60	HF	215-490	. $004-.013$. $009-.014$	
							G	215-425	. 004 - . 01	. $005-.014$	
			Hardenable		22	100	HF	215-490	. $004-.013$. $009-.014$	
							G	215-425	. $003-.009$. $005-.011$	
N	Aluminumcast alloys	$\leq 12 \% \mathrm{Si}$	Not hardenable		23	75	HF	215-490	. $0004-.013$. $009-.014$	
			Not hardenable				G	215-425	. $003-.009$. $005-.011$	
			Hardenable		24	90	HF	215-490	. $0004-.013$. $009-.014$	
							G	215-425	. $003-.009$. $005-.011$	
		>12\% Si	High temperature		25	130	HF	215-490	. $004-.013$. $009-.014$	
							G	215-425	. $000-.009$. $0005-.011$	
	Copper alloy	>1\% Pb	Free cutting		26	110	G	215-490	. $0004-.013$. $0009-.014$	
							HF	215-490	. $0003-.009$. $005-.011$	
			Brass		27	90	G	215-425	. $0003-.009$. $0005-.011$	
			Electrolitic copper		28	100	HF	215-490	. $004-.013$. $009-.014$	
			Electrolic copper				G	215-425	. $003-.009$. $005-.011$	
s	High temp. alloys	Fe base	Annealed		31	200	HF	65-180	. $004-.012$. $008-.013$	
							G	65-165	. $003-.009$. $005-.011$	
			Hardened		32	280	HF	65-180	. $0004-.012$. $008-.013$	
		$\mathrm{Ni} / \mathrm{Co}$ base	Annealed		33	250	HF	65-180	. $0004-.012$. $0008-.013$	
			Annealed		33	250	G	65-165	. $003-.009$. $005-.011$	
			Hardened		34	350	HF	65-180	. $0004-.012$. $000-.013$	
							G	65-165	. $003-.009$. $005-.011$	
			Cast		35	320	HF	65-180	. $0004-.012$. $008-.013$	
							G	65-165	. $003-.009$. $005-.011$	
	Titanium alloys		Pure	58	36		HF	100-195	. $0004-.012$. $000-.013$	
							G	100-195	. $003-.009$. $005-.011$	
			Alpha+beta alloys	152	37		HF	100-195	. $004-.012$. $008-.013$	
							G	100-195	. $003-.009$. $005-.011$	
	Hardened steel $\geq 40 \mathrm{HRC}$		Hardened		38		HF	100-195	. $0004-.012$. $0008-.013$	
							G	100-195	. $003-.009$. $005-.011$	

옹

 HB)

Cutting V_{c} (SFM) Drill dia. (inch)

,

 d

