Recommended Machining Conditions

O	Material	Condition	Tensile Strength [ksi]	Hardness HB	Material Group No. ${ }^{(1)}$	Adjustable Solid Drill Heads ISD-EC, IDD-EC, ISD-IC					
						Dia. Range	1.496-1.574	1.575-2.047	2.0472-2.519	2.520-3.346	3.3464-
						$\mathrm{V}_{\mathrm{c}}(\mathrm{SFM})$	Feed Rate f (IPR)				
P	 $\begin{array}{l}\text { Non-alloy steel and cast } \\ \text { steel, free cutting steel }\end{array}$ $\begin{array}{l}\leq 0.25 \% \mathrm{C} \\ \\ \end{array}$ $\geq 0.25 \% \mathrm{C}$ $0.55 \% \mathrm{C}$ $\geq 0.55 \% \mathrm{C}$	Annealed	61	125	1	195-395	. 003 - . 006	. $004-.008$. 005 - . 009	. 006 - . 01	. $007-.012$
		Annealed	94	190	2	195-395	. $003-.006$. $004-.008$. 005 - . 009	. 006 - . 01	. $007-.012$
		Quenched and tempered	123	250	3	195-395	. $003-.006$. $004-.008$. $005-.009$. 006 - . 01	. $007-.012$
		Annealed	109	220	4	195-395	. 003 - . 006	. $004-.008$. 005 - . 009	. $006-.01$. $007-.012$
		Quenched and tempered	145	300	5	195-395	. $003-.006$. $004-.008$. 005 - . 009	. $006-.01$. $007-.012$
	Low alloy and cast steel (less than 5% of alloying elements)	Annealed	87	200	6	195-330	. $003-.006$. $004-.008$. $005-.009$. $006-.01$. $007-.012$
		Quenched and tempered	135	275	7	195-330	. $003-.006$. $004-.008$. $005-.009$. 006 - . 01	. $007-.012$
			145	300	8	165-330	. $003-.006$. $004-.008$. $005-.009$. $006-.01$. $007-.012$
			174	350	9	165-330	. $003-.006$. $004-.008$. $005-.009$. $006-.01$. $007-.012$
	High alloyed steel, cast steel and tool steel	Annealed	99	200	10	195-395	. 003 -. 006	. $004-.008$. $005-.009$. 006 - . 01	. $007-.012$
		Quenched and tempered	160	325	11	195-395	. $003-.006$. $004-.008$. $005-.009$. 006 - . 01	. $007-.012$
	Stainless steel and cast steel	Ferritic/martensitic	99	200	12	195-360	. $003-.006$. $004-.008$. $005-.009$. $006-.01$. $007-.012$
		Martensitic	119	240	13	195-360	. $003-.006$. $004-.008$. $005-.009$. $006-.01$. $007-.012$
M	Stainless steel and cast steel	Austenitic, duplex	87	180	14	195-360	. 003 - . 006	. $004-.008$. $005-.009$. 006 - . 01	. $007-.012$
K	Gray cast iron (GG)	Ferritic / pearilic		180	15	195-330	. $003-.005$. $004-.006$. $005-.007$. $006-.008$. 007 - . 009
		Pearilic / martensitic		260	16	195-330	. $003-.005$. $004-.006$. $005-.007$. $006-.008$. 007 - . 009
	Nodular cast iron (GGG)	Ferritic		160	17	195-330	. $003-.005$. $004-.006$. $005-.007$. $006-.008$. $007-.009$
		Pearilic		250	18	195-330	. $003-.005$. $004-.006$. $005-.007$. $006-.008$. 007 - . 009
	Malleable cast iron	Ferritic		130	19	195-330	. $003-.005$. $004-.006$. $005-.007$. $006-.008$. $007-.009$
		Pearilic		230	20	195-330	. $003-.005$. $004-.006$. $005-.007$. $006-.008$. 007 - . 009
N	Aluminum-wrought alloys	Not hardenable		60	21	195-425	. $003-.008$. $004-.01$. $005-.011$. $006-.012$. $007-.013$
		Hardenable		100	22	195-425	. $003-.008$. $004-.01$. $005-.011$. $006-.012$. $007-.013$
	Aluminum-cast alloys $\leq 12 \% \mathrm{Si}$	Not hardenable		75	23	195-425	. 003 - . 008	. $004-.01$. $005-.011$. $006-.012$. $007-.013$
		Hardenable		90	24	195-425	. $003-.008$. $004-.01$. $005-.011$. $006-.012$. $007-.013$
	$>12 \% \mathrm{Si}$	High temperature		130	25	195-425	. 003 - . 008	. 004 - . 01	. $005-.011$. $006-.012$. 007 - . 013
	Copper alloys $\quad \geq 1 \% \mathrm{~Pb}$	Free cutting		110	26	195-425	. $003-.008$. $004-.01$. $005-.011$. $006-.012$. $007-.013$
		Brass		90	27	195-425	. $003-.008$. $004-.01$. $005-.011$. $006-.012$. $0007-.013$
		Electrolytic copper		100	28	195-425	. 003 - . 008	. $004-.01$. $005-.011$. $006-.012$. $007-.013$
	Non metallic	Duroplastics, fiber plastics			29	65-215	. $003-.006$. $004-.008$. $005-.009$. $006-.01$. $007-.012$
		Hard rubber			30	65-215	. 003 - . 006	. $004-.008$. $005-.009$. $006-.01$. $007-.012$
S	High temperature alloys \quadFe based Ni or Co based	Annealed		200	31	65-215	. 003 - . 006	. 004 - . 008	. $005-.009$. $006-.01$. $007-.012$
		Hardened		280	32	65-215	. 003 - . 006	. $004-.008$. $005-.009$. 006 - . 01	. $007-.012$
		Annealed		250	33	65-215	. 003 - . 006	. $004-.008$. $005-.009$. 006 - . 01	. $007-.012$
		Hardened		350	34	100-330	. $003-.006$. $004-.008$. $005-.009$. $006-.01$. $0007-.012$
		Cast		320	35	100-330	. 003 - . 006	. 004 - . 008	. $005-.009$. 006 - . 01	. 007 - . 012
	Titanium alloys	Pure	58		36						
		Alpha+beta alloys, hardened	152		37						
H	Hardened steel	Hardened		55 HRC	38						
		Hardened		60 HRC	39						
	Chilled cast iron	Cast		400	40						
	Cast iron	Hardened		55 HRC	41						

[^0]
[^0]: (1) Based on ISO 513 and VDI 3323 standards

