Insert	Size	Chipbreaker Geometry	Process type	Chipbreaker Type	Ground Wiper	Ground Edge	Ground Clamping Base
HM390 TDKT 1505PDR-MP	15	PDR-MP	SEMI AND FINISH	Negative	Yes	No	No
HM390 TDKT 1505PDR-HS		PDR-HS	ROUGH	Negative	No	No	No
HM390 TDKT 1505..PDR		PDR	SEMI FINISH	Negative	No	No	No
HM390 TDKT 1505PDR-GW		PDR-GW	SEMI AND FINISH	Negative	Yes	No	No
HM390 TDKT 1505PDR-FW		PDR-FW	ROUGH	Negative	No	No	No
HM390 TDKR 150508 PDRHM		PDRHM	SEMI AND FINISH	Positive	Yes	No	No

HM390 TDKT 1505PDR-FW

The serrated wavy cutting edges of the insert provide the following advantages:

- Crushes chips into small segments
- Reduces cutting forces and thus power consumption
- Increases cutter stability
- Improves chip evacuation

Due to the above-mentioned features, cutters carrying the new HM390 TDKT 1505PDR-FW insert provide extra efficiency in rough milling, especially in the following cases

- Low operational stiffness (high overhang, poor workholding, thin-walled workpiece, etc.)
- Limited machine power
- Difficult chip evacuation in narrow slots or deep cavities

HM390 TDKT 1505PDR-FW Insert for HM390-15 Milling Cutters

This single-sided triangular insert has three positive and serrated cutting edges intended for up to 12 mm milling depth of cut.
5 serration grooves on each flank of the insert generate a wavy cutting edge
The insert also features a wiper corner edge for high surface finish.

Main Application

Machining square shoulders using 90° face and endmills.

In order to provide an overlapping effect and to achieve optimal chip crushing, it is recommended to mount the HM390 TDKT 1505PDR-FW insert in an alternating edge configuration on adjacent cutter flutes.

Mounting Instructions

Notes for technologists and CNC programmers

When the HM390 TDKT 1505PDR-FW inserts are mounted on standard tools, their actual diameter will be $\mathbf{1 . 0} \mathbf{~ m m}$ larger than their nominal diameter.

