

Diameter Setting

The drill head diameter is set and inspected with a master insert in our final inspection. However, the inserts in

the market have a tolerance fluctuation so each time you change or index the insert, the diameter must be adjusted as per the following method.

Technical Information - NC Cycle

Use the NC cycle as instructed below to optimize tool performance more safely.

1. Start NC operation cycle.

Technical Information - Notes for Guide Bushing Installation

Many of the problems in BTA drilling are caused by incorrect use of the guide bushing. The shape, type and tolerance greatly affect cutting accuracy and tool life. Please note the following when using one in

your application.

Technical Information -Cutting Fluid Management

Successful deep hole drilling can be achieved not only by tooling but also by an optimized combination of the tool, the machine and the cutting fluid. The cutting fluid is one of the essential components to obtain safe, stable and cost efficient deep hole drilling. Therefore, it is very important to choose and use the cutting fluid correctly.

Cutting Fluid

The cutting fluid plays a large role in lubrication of the tool, cooling of cutting edges and chips and evacuation of chips in deep hole drilling. It also contributes to improved tool life, surface finish and cutting accuracy when being fed continuously during cutting.

Lubrication

Lubrication of cutting edges and guide pads is necessary in deep hole drilling. To get efficient lubrication, it is recommended to use **EP** (Extreme Pressure) additives that contain sulfur or chlorine.

Heat dissipation

The coolability of cutting fluid depends on thermal characteristics such as thermal conductivity and specific heat. The cutting fluid of good coolability increases tool life, but a water-soluble type is not preferred in deep hole drilling because of a lesser lubrication effect. If water-soluble fluid is used, the concentration is recommended to be 10% (dilution rate 1/10) or more. Cooling of chips is important as well as cooling of cutting edges and guide pads in deep hole drilling. Temperature control is also important to maintain long tool life, stable cutting conditions and cutting accuracy.

Chip evacuation

Cutting fluid has an important role in deep hole drilling as it evacuates chips through to the back end of boring bar (for STS) or inner tube (for **DTS**), whereas it finishes its role as soon as the chips are separated from the workpiece in general cutting. It is also important to control the flow and the pressure of cutting fluid.

STS (Single Tube System)	DTS (Double Tube System)

Coolant Unit

The coolant unit is also important to obtain the optimal effect of the cutting fluid, which has an important role in deep hole drilling.

Supply cutting fluid continuously at constant pressure and flow. Fluid

Therefore the cutting fluid temperature should be kept at 30-40°C (90-100°**F**) throughout the cutting operation.

Filtration

A lot of particles are contained in cutting fluid after finishing cutting

- pressure and flow are recommended to be continuously variable and monitored with a pressure gauge and a flow gauge. Screw pumps with an inverter are suitable.
- Maintain constant temperature
- The cutting fluid is heated by factors such as:
- Cutting edge • Friction of guide pad
- Contact duration of heated chips and cutting fluid
- Pump Maintenance of the constant cutting fluid temperature is important for stable cutting conditions, chip formation and cutting accuracy. The temperature should be lower than 40°C (100°F) for EP additives to
- provide sufficient lubrication.

Flow chart of cutting fluid in deep hole drilling

and chip evacuation; thus filtration is necessary to remove them. The filter size should be selected to catch particles but not EP additives. The size depends on the cutting fluid, but generally it is suggested to be around 10-20 µm. For iron-based workpieces, a magnetic separator will be helpful, which decreases filter maintenance frequency.

Deep Hole Drilling Systems

Problem	Possible Cause	Solution						
	Chip evacuation problems	Check that the coolant passages are clear and that the Venturi slots are not damaged						
The drill breaks or insert chips	Center misalignment of drill	Check center alignment of drill to workpiece						
	to workpiece	Check workpiece and drill clamping rigidity						
	Workpiece or drill clamping rigidity problem	Improve workpiece or drill clamping						
Poor surface finish	Inadequate coolant oil	Check the coolant oil and replace if necessary Increase the cutting speed						
	Cutting speed too low							
	Chips block the fluid passages 'ncorrectly	Clear the chips						
Excessive leakage of the coolant	assembled, or the Venturi slots of the internal tube are located in the wrong direction	Check all connections and the direction of the internal tube						
	Chips block the fluid passages	Clear the chips						
Insufficient coolant flow at the cutting	Worn bushing or sealing device	Check the bushing and seal and replace if necessary						
zone, despite correct	Venturi slots are too wide (worn) Internal tube shorter than the external tube	Replace the internal tube Replace the internal tube to one with						
		a correct length						
Chips iam in the front	Insufficient coolant flow	Adjust the fluid flow by raising the pressure; check the filter and fluid quality						

end of the drill

Connection Adapters Various kinds of rotating and non-rotating drill connectors are available upon request.

Oil Pressure Heads Oil pressure heads are available on request.

Special Heads

Special form heads for trepanning or any other special contours can be produced on request.

							Adjustable Counterboring Heads DSD-EF-FB, DDD-EF-FB, DSD-IF-FB		I Heads SD-IF-FB	Adjustable Solid Drill Heads DSD-EC, DDD-EC, DSD-IC					
				Tonoilo			Dia. Range	25.00 - 43.00	43.01 - 65.00	Dia. Range	38.00- 39.99	40.00-51.99	52.00- 63.99	64.00-84.99	85.00-
ISO	D Material		Condition	Strength	Hardness HB	Material No.	Vc (m/min)	Feed Rate f (mm/rev)		Vc (m/min)	Feed Rate f (mm/rev)				
		< 0.25 %C	Annealed	420	125	1	70-130	0.1-0.3	0.12-0.35	60-120	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
	Non-allov steel and	>= 0.25 %C	Annealed	650	190	2	70-130	0.1-0.3	0.12-0.35	60-120	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
	cast steel, free cutting	< 0.55 %C	Quenched and tempered	850	250	3	70-130	0.1-0.3	0.12-0.35	60-120	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
	steel	>= 0.55 %C	Annealed	750	220	4	70-130	0.1-0.3	0.12-0.35	60-120	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
			Quenched and tempered	1000	300	5	70-130	0.1-0.3	0.12-0.35	60-120	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
			Annealed	600	200	6	70-120	0.1-0.3	0.12-0.35	60-100	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
Ρ	Low alloy steel and cas	st steel		930	275	7	60-120	0.1-0.3	0.12-0.35	60-100	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
	(less than 5% of alloying e	(less than 5% of alloying elements)		1000	300	8	60-120	0.1-0.3	0.12-0.35	50-100	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
				1200	350	9	60-120	0.1-0.3	0.12-0.35	50-100	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
	High alloved steel, cast	t steel.	Annealed	680	200	10	70-130	0.1-0.3	0.12-0.35	60-120	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
	and tool steel	,	Quenched and tempered	1100	325	11	70-130	0.1-0.3	0.12-0.35	60-120	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
	Stainless steel and		Ferritic/martensitic	680	200	12	70-130	0.1-0.3	0.12-0.35	60-110	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
	cast steel		Martensitic	820	240	13	70-130	0.1-0.3	0.12-0.35	60-110	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
Μ	Stainless steel		Austenitic	600	180	14	70-130	0.1-0.3	0.12-0.35	60-110	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
			Ferritic/pearlitic		180	15	50-110	0.1-0.25	0.12-0.35	60-100	0.08-0.13	0.1-0.15	0.13-0.18	0.15-0.2	0.18-0.23
	Grey cast iron (GG)		Pearlitic		260	16	50-110	0.1-0.25	0.12-0.35	60-100	0.08-0.13	0.1-0.15	0.13-0.18	0.15-0.2	0.18-0.23
			Ferritic		160	17	60-110	0.1-0.25	0.12-0.35	60-100	0.08-0.13	0.1-0.15	0.13-0.18	0.15-0.2	0.18-0.23
	Nodular cast iron (GGG) Pearlitic		Pearlitic		250	18	60-110	0.1-0.25	0.12-0.35	60-100	0.08-0.13	0.1-0.15	0.13-0.18	0.15-0.2	0.18-0.23
			Ferritic		130	19	70-110	0.1-0.25	0.12-0.35	60-100	0.08-0.13	0.1-0.15	0.13-0.18	0.15-0.2	0.18-0.23
	Malleable cast iron		Pearlitic		230	20	70-110	0.1-0.25	0.12-0.35	60-100	0.08-0.13	0.1-0.15	0.13-0.18	0.15-0.2	0.18-0.23
	Aluminum-		Not cureable		60	21	65-130	0.1-0.25	0.12-0.35	60-130	0.08-0.2	0.1-0.25	0.13-0.28	0.15-0.3	0.18-0.33
	wrought alloy		Cured		100	22	65-130	0.08-0.23	0.12-0.27	60-130	0.08-0.2	0.1-0.25	0.13-0.28	0.15-0.3	0.18-0.33
		<=12% Si	Not cureable		75	23	65-130	0.08-0.23	0.12-0.27	60-130	0.08-0.2	0.1-0.25	0.13-0.28	0.15-0.3	0.18-0.33
	Aluminum-cast,		Cured		90	24	65-130	0.08-0.23	0.12-0.27	60-130	0.08-0.2	0.1-0.25	0.13-0.28	0.15-0.3	0.18-0.33
	alloyed	>12% Si	High temperature		130	25	65-130	0.08-0.23	0.12-0.27	60-130	0.08-0.2	0.1-0.25	0.13-0.28	0.15-0.3	0.18-0.33
		>1% Pb	Free cutting		110	26	65-130	0.08-0.23	0.12-0.27	60-130	0.08-0.2	0.1-0.25	0.13-0.28	0.15-0.3	0.18-0.33
	Copper allovs		Brass		90	27	65-130	0.08-0.23	0.12-0.27	60-130	0.08-0.2	0.1-0.25	0.13-0.28	0.15-0.3	0.18-0.33
			Electrolitic copper		100	28	65-130	0.08-0.23	0.12-0.27	60-130	0.08-0.2	0.1-0.25	0.13-0.28	0.15-0.3	0.18-0.33
	Non-metallic		Duroplastics, fiber plastics			29	20-50	0.08-0.23	0.12-0.27	20-65	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
			Hard rubber			30	20-50	0.08-0.23	0.12-0.27	20-65	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
		Fe based	Annealed		200	31	20-50	0.08-0.23	0.12-0.27	20-65	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
	- High temp. alloys		Cured		280	32	20-50	0.08-0.23	0.12-0.27	20-65	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
		Ni or Co based	Annealed		250	33	20-50	0.08-0.23	0.12-0.27	20-65	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
S			Cured		350	34	30-60	0.08-0.23	0.12-0.27	30-100	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
			Cast		320	35	30-60	0.08-0.23	0.12-0.27	30-100	0.08-0.15	0.1-0.2	0.13-0.23	0.15-0.25	0.18-0.3
	Titanium Ti alloys			RM 400		36									
			Alpha+beta allovs cured	RM 1050		37									
H	Hardened steel		Hardened		55 HBC	38									
			Hardened		60 HBC	39									
			Cast		400	40									
	Cast iron		Hardened		55 HBC	41									
	outerion		riardonou		001110										