Insert Clamping Instructions

• Prior to using 8xD and longer drills, it is recommended to drill a 0.5xD pre-hole using a short or centering drill. Enter the pre-hole at slow speed and feed until 2-5 mm from its bottom. Start the cooling system and increase rotation to recommended drilling speed. Hold for 2-3 seconds, then continue at the recommended drilling feed rate.

Flow Rate vs. Pressure and **Drill Diameter**

Drill Diameter (mm)	Pressure (bar)	Flow Rate (liter/min)
33	20	60
34	20	60
35	20	60
36	20	60
37	20	60
38	20	70
39	20	70
40	20	70

Achievable Hole Tolerances 5xD Drills

Indication of Drill Head Wear Wear Limit

Diameter Change

Alloy and Carbon Steel and Cast Iron

Hole Geometrical Feature	What Should You Expect
Ø Diameter tolerance	+0.06 mm
Circularity	0.035
Hole axis straightness (/100mm)	0.03-0.10
Surface finish 🗸	0.6-3.2Ra

Power Restriction

Surface Finish Declines

Troubleshooting

Cutting Edge Chipping

- **1.** Check the stability of the machine spindle, tool and workpiece clamping rigidity.
- **2.** Reduce feed rate, increase speed.
- 3. If the drill vibrates, reduce cutting speed and increase feed rate.
- **4.** When drilling rough, hard or sloped surfaces (up to 7°), reduce the feed rate by 50%-70% during entrance and exit.
- **5.** Check cooling lubricant. Increase coolant pressure. In case of external coolant supply, improve jet direction and add cooling jets.

Chisel Area Chipping

- **1.** Reduce feed rate.
- 2. Increase coolant pressure.
- **3.** Increase workpiece chucking force.

Excessive Flank Wear

- **1.** Reduce cutting speed.
- 2. Increase internal coolant pressure.

Excessive Land Wear

- **1.** Check the runout and make sure it is within 0.03 mm T.I.R. (radial and axial).
- **2.** Reduce cutting speed.
- **3.** When drilling rough, hard or sloped surfaces (up to 7°), reduce the feed rate by 50%-70% during entrance and exit.
- **4.** Increase coolant pressure.
- **5.** Check the chisel point runout and make sure it is within 0.03 mm T.I.R.
- 6. Increase workpiece chucking force stability and rigidity.

Troubleshooting

Built-Up Edge

- **1.** Increase cutting speed/feed.
- **2.** Increase coolant pressure.

<u>Ø > D nominal + 0.1</u>5m <mark>∢D nomin</mark>al

Deviation of Hole Tolerance

- **1.** Check the runout and make sure it is within 0.03 mm T.I.R. (radial and axial cutting points).
- **2.** Reduce feed rate.
- 3. Check the chisel point runout and make sure it is within 0.03 mm T.I.R.
- **4.** Worn cutting edge. Replace head.
- **5.** Increase workpiece chucking force.
- **6.** Increase internal coolant pressure.

Surface Finish **Too Rough**

- **1.** Check the runout and make sure it is within 0.03 mm T.I.R. (radial and axial).
- **2.** Adjust the feed for improved chip formation.
- 3. In case of chip jamming increase the coolant flow and/or reduce the cutting speed.
- **4.** Increase the coolant pressure.
- **5.** Check the chisel point runout and make sure it is within 0.03 mm T.I.R.
- 6. Use pecking cycle.
- 7. Replace the drilling head

Hole Not Straight

• Drill a pre-hole for centering (check recommendations for pre-hole operation).

- Increase coolant pressure; improve jet direction in case of external coolant supply.
- Increase the feed.

Inaccurate Hole Position

- **1.** Check the runout and make sure it is within 0.03 mm T.I.R. (radial and axial).
- **2.** Check the stability of the machine spindle, tool and workpiece clamping rigidity.
- **3.** When drilling rough, hard or sloped surfaces (up to 7°), reduce the feed rate by 50%-70% during entrance.
- **4.** Drill a pre-hole with a 140° point angle for centering.
- **5.** Check the chisel point runout and make sure it is within 0.03 mm T.I.R.

Burrs on Exit

- **1.** Reduce the feed rate by 50%-70% during exit.
- **2.** Replace the worn head.