TECHKNOW

Resize
Dock/Undock
NEW FAQ ADDED
X
Our website uses cookies and other technologies to ensure you get the best browsing experience.

You can change your cookie settings at any time.

Find out more on how we use cookies.

Groove-Turn & Parting Inserts Wear Problems and Solutions

GROOVE-TURN INSERTS
PARTING OFF
FACE GROOVING


Type of Wear
    • ×
      Flank Wear
      Flank Wear
      Cause
      • High cutting speed
      • Low wear resistance carbide grade

      Remedy
      • Reduce cutting speed
      • Use harder grade
      • Increase coolant pressure
      • Adjust center height position
    • ×
      Crater Wear
      Crater Wear
      Cause
      • Excessive cutting temperatures and pressures on the top of the insert.

      Remedy
      • Reduce cutting speed
      • Reduce feed rate
      • Use harder grade
      • Increase coolant pressure
      • Use an insert with a positive cutting rake
    • ×
      Plastic Deformation
      Plastic Deformation
      Cause
      • Cutting temperature is too high

      Remedy
      • Reduce cutting speed
      • Reduce feed rate
      • Use harder grade
      • Increase coolant pressure
    • ×
      Notch Wear
      Notch Wear
      Cause
      • Cutting speed too high, or insufficient insert wear resistance of the carbide grade

      Remedy
      • Reduce the cutting speed
      • Reduce the feed rate
      • Use harder grade
      • Vary the cutting depth
      • Increase coolant pressure
    • ×
      Thermal Cracking
      Thermal Cracking
      Cause
      • Excessive variations in surface temperature, intermittent machining, or variations in coolant supply

      Remedy
      • Reduce cutting speed
      • Reduce feed rate
      • Use tougher grade
      • Use stronger edge geometry
      • Turn off coolant supply when machining interrupted cuts
    • ×
      Edge Fracture
      Edge Fracture
      Cause
      • Caused by excessive insert wear before indexing the insert
      • The grade and geometry could be too weak for the applications
      • Excessive load on the insert
      • Built-up edge has been formed on the insert

      Remedy
      • Reduce the cutting speed
      • Use tougher grade
      • Reduce the feed rate
      • Use more stable tool holder
      • Use reinforced cutting edge negative cutting rake
      • Use screw clamping instead of self clamping
      • Adjust center height position
      • Reduce tool extension
    • ×
      Built-up Edge
      Built-up Edge
      Cause
      • Cutting zone temperature is too low
      • Negative cutting geometry
      • Machining of very sticky materials such as low-carbon steel, stainless steels, and aluminum

      Remedy
      • Increase the cutting speed
      • Use an indexable insert with a sharper cutting edge
      • Increase the coolant pressure
    • ×
      Flank Wear
      Flank Wear
      Cause
      • High cutting speed
      • Low wear resistance carbide grade

      Remedy
      • Reduce cutting speed
      • Use harder grade
      • Increase coolant pressure
      • Adjust center height position
    • ×
      Crater Wear
      Crater Wear
      Cause
      • Excessive cutting temperatures and pressures on the top of the insert.

      Remedy
      • Use harder grade
      • Reduce cutting speed
      • Increase coolant pressure
      • Use an insert with a positive cutting rake
    • ×
      Plastic Deformation
      Plastic Deformation
      Cause
      • Cutting temperature is too high

      Remedy
      • Use harder grade
      • Reduce feed rate
      • Reduce cutting speed
      • Increase coolant pressure
    • ×
      Notch Wear
      Notch Wear
      Cause
      • Cutting speed too high, or insufficient insert wear resistance of the carbide grade

      Remedy
      • Reduce the cutting speed
      • Use harder grade
      • Use reinforced cutting edge negative cutting rake
      • Adjust center height position
      • Increase the coolant pressure
    • ×
      Thermal Cracking
      Thermal Cracking
      Cause
      • Excessive variations in surface temperature, intermittent machining, or variations in coolant supply

      Remedy
      • Reduce cutting speed
      • Reduce feed rate
      • Use tougher grade
      • Use stronger edge geometry
      • Turn off coolant supply when machining interrupted cuts
    • ×
      Edge Fracture
      Edge Fracture
      Cause
      • Caused by excessive insert wear before indexing the insert
      • The grade and geometry could be too weak for the applications
      • Excessive load on the insert
      • Built-up edge has been formed on the insert

      Remedy
      • Reduce the cutting speed
      • Use tougher grade
      • Reduce feed rate
      • Reduce tool extension
      • Use more stable tool holder
      • Use reinforced cutting edge negative cutting rake
      • Use screw clamping instead of self clamping
      • Check center height position
      • Use screw clamping instead of self- clamping
    • ×
      Built-up Edge
      Built-up Edge
      Cause
      • Cutting zone temperature is too low
      • Negative cutting geometry
      • Machining of very sticky materials such as low-carbon steel, stainless steels, and aluminum

      Remedy
      • Increase the cutting speed
      • Use an insert with a positive cutting rake
      • Increase the coolant pressure
    • ×
      Flank Wear
      Flank Wear
      Cause
      • High cutting speed
      • Low wear resistance carbide grade

      Remedy
      • Reduce cutting speed
      • Use harder grade
      • Increase coolant pressure
      • Adjust center height position
    • ×
      Crater Wear
      Crater Wear
      Cause
      • Excessive cutting temperatures and pressures on the top of the insert.

      Remedy
      • Use harder grade
      • Reduce cutting speed
      • Increase coolant pressure
      • Use an insert with a positive cutting rake
    • ×
      Plastic Deformation
      Plastic Deformation
      Cause
      • Cutting temperature is too high

      Remedy
      • Use harder grade
      • Reduce feed rate
      • Reduce cutting speed
      • Increase coolant pressure
    • ×
      Notch Wear
      Notch Wear
      Cause
      • Cutting speed too high, or insufficient insert wear resistance of the carbide grade

      Remedy
      • Reduce the cutting speed
      • Use harder grade
      • Use reinforced cutting edge negative cutting rake
      • Adjust center height position
      • Increase the coolant pressure
    • ×
      Thermal Cracking
      Thermal Cracking
      Cause
      • Excessive variations in surface temperature, intermittent machining, or variations in coolant supply

      Remedy
      • Reduce cutting speed
      • Reduce feed rate
      • Use tougher grade
      • Use stronger edge geometry
      • Turn off coolant supply when machining interrupted cuts
    • ×
      Edge Fracture
      Edge Fracture
      Cause
      • Caused by excessive insert wear before indexing the insert
      • The grade and geometry could be too weak for the applications
      • Excessive load on the insert
      • Built-up edge has been formed on the insert

      Remedy
      • Reduce cutting speed
      • Use tougher grade
      • Reduce feed rate
      • Reduce tool extension
      • Use more stable tool holder
      • Use reinforced cutting edge negative cutting rake
      • Check center height
      • Use screw clamping instead of self- clamping
    • ×
      Built-up Edge
      Built-up Edge
      Cause
      • Cutting zone temperature is too low
      • Negative cutting geometry
      • Machining of very sticky materials such as low-carbon steel, stainless steels, and aluminum

      Remedy
      • Increase the cutting speed
      • Use an insert with a positive cutting rake
      • Increase the coolant pressure
Terms of Use and Legal Disclaimer    Privacy Statement
© ISCAR LTD. Manufacturer of Metalworking Tools (Iscar.com) All Rights Reserved